BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 29343788)

  • 41. Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta).
    Tartar A; Boucias DG; Adams BJ; Becnel JJ
    Int J Syst Evol Microbiol; 2002 Jan; 52(Pt 1):273-9. PubMed ID: 11837312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes.
    Dorrell RG; Azuma T; Nomura M; Audren de Kerdrel G; Paoli L; Yang S; Bowler C; Ishii KI; Miyashita H; Gile GH; Kamikawa R
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6914-6923. PubMed ID: 30872488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.
    Qiu H; Lee JM; Yoon HS; Bhattacharya D
    J Phycol; 2017 Jun; 53(3):715-719. PubMed ID: 28095611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The loss of photosynthesis pathway and genomic locations of the lost plastid genes in a holoparasitic plant Aeginetia indica.
    Chen J; Yu R; Dai J; Liu Y; Zhou R
    BMC Plant Biol; 2020 May; 20(1):199. PubMed ID: 32384868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids.
    Jackson C; Knoll AH; Chan CX; Verbruggen H
    Sci Rep; 2018 Jan; 8(1):1523. PubMed ID: 29367699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements.
    Saldarriaga JF; Taylor FJ; Keeling PJ; Cavalier-Smith T
    J Mol Evol; 2001 Sep; 53(3):204-13. PubMed ID: 11523007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences.
    Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T
    J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly Reduced Plastid Genomes of the Non-photosynthetic Dictyochophyceans
    Kayama M; Maciszewski K; Yabuki A; Miyashita H; Karnkowska A; Kamikawa R
    Front Plant Sci; 2020; 11():602455. PubMed ID: 33329672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Why are plastid genomes retained in non-photosynthetic organisms?
    Barbrook AC; Howe CJ; Purton S
    Trends Plant Sci; 2006 Feb; 11(2):101-8. PubMed ID: 16406301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A single loss of photosynthesis in the diatom order Bacillariales (Bacillariophyta).
    Onyshchenko A; Ruck EC; Nakov T; Alverson AJ
    Am J Bot; 2019 Apr; 106(4):560-572. PubMed ID: 30958893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta.
    McNeal JR; Kuehl JV; Boore JL; de Pamphilis CW
    BMC Plant Biol; 2007 Oct; 7():57. PubMed ID: 17956636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans.
    Archibald JM; Rogers MB; Toop M; Ishida K; Keeling PJ
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7678-83. PubMed ID: 12777624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene-rich plastid genomes of two parasitic red algal species, Laurencia australis and L. verruciformis (Rhodomelaceae, Ceramiales), and a taxonomic revision of Janczewskia.
    Preuss M; Díaz-Tapia P; Verbruggen H; Zuccarello GC
    J Phycol; 2023 Oct; 59(5):950-962. PubMed ID: 37638497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Algal genes in the closest relatives of animals.
    Sun G; Yang Z; Ishwar A; Huang J
    Mol Biol Evol; 2010 Dec; 27(12):2879-89. PubMed ID: 20627874
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.
    Méheust R; Zelzion E; Bhattacharya D; Lopez P; Bapteste E
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3579-84. PubMed ID: 26976593
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Applications of next-generation sequencing to unravelling the evolutionary history of algae.
    Kim KM; Park JH; Bhattacharya D; Yoon HS
    Int J Syst Evol Microbiol; 2014 Feb; 64(Pt 2):333-345. PubMed ID: 24505071
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes.
    Wägele H; Deusch O; Händeler K; Martin R; Schmitt V; Christa G; Pinzger B; Gould SB; Dagan T; Klussmann-Kolb A; Martin W
    Mol Biol Evol; 2011 Jan; 28(1):699-706. PubMed ID: 20829345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A single origin of the photosynthetic organelle in different Paulinella lineages.
    Yoon HS; Nakayama T; Reyes-Prieto A; Andersen RA; Boo SM; Ishida K; Bhattacharya D
    BMC Evol Biol; 2009 May; 9():98. PubMed ID: 19439085
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plastid genome evolution in mycoheterotrophic Ericaceae.
    Braukmann T; Stefanović S
    Plant Mol Biol; 2012 May; 79(1-2):5-20. PubMed ID: 22442035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.