BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29343791)

  • 1. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis.
    Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B
    Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis.
    Xiong ZQ; Wei YY; Kong LH; Song X; Yi HX; Ai LZ
    J Dairy Sci; 2020 Jan; 103(1):161-165. PubMed ID: 31733872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
    van der Els S; James JK; Kleerebezem M; Bron PA
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-plasmid systems based on CRISPR-Cas9 for gene editing in Lactococcus lactis.
    Song X; Liu L; Liu XX; Xiong ZQ; Xie CL; Wang SJ; Ai LZ
    J Dairy Sci; 2021 Oct; 104(10):10576-10585. PubMed ID: 34275631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a food-grade gene editing system based on CRISPR-Cas9 and its application in Lactococcus lactis NZ9000.
    Zhou Y; Song F; Yang H; Li D; Zhang N; Huang K; He X; Wang M; Tian H; Li C
    Biotechnol Lett; 2023 Aug; 45(8):955-966. PubMed ID: 37266879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food-grade delivery system for controlled gene expression in Lactococcus lactis.
    Henrich B; Klein JR; Weber B; Delorme C; Renault P; Wegmann U
    Appl Environ Microbiol; 2002 Nov; 68(11):5429-36. PubMed ID: 12406734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris.
    Gu Y; Gao J; Cao M; Dong C; Lian J; Huang L; Cai J; Xu Z
    World J Microbiol Biotechnol; 2019 May; 35(6):79. PubMed ID: 31134410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression.
    Simões-Barbosa A; Abreu H; Silva Neto A; Gruss A; Langella P
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):61-7. PubMed ID: 14758518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid and versatile tool for genomic engineering in Lactococcus lactis.
    Guo T; Xin Y; Zhang Y; Gu X; Kong J
    Microb Cell Fact; 2019 Jan; 18(1):22. PubMed ID: 30704485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Lactococcus lactis as a multi-stress tolerant biosynthetic chassis by deleting the prophage-related fragment.
    Qiao W; Qiao Y; Liu F; Zhang Y; Li R; Wu Z; Xu H; Saris PEJ; Qiao M
    Microb Cell Fact; 2020 Dec; 19(1):225. PubMed ID: 33298073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis.
    Campelo AB; Roces C; Mohedano ML; López P; Rodríguez A; Martínez B
    Microb Cell Fact; 2014 May; 13():77. PubMed ID: 24886591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Lactococcus lactis encoding fluorescent proteins, GFP, mCherry and iRFP regulated by the nisin-controlled gene expression system.
    Martinez-Jaramillo E; Garza-Morales R; Loera-Arias MJ; Saucedo-Cardenas O; Montes-de-Oca-Luna R; McNally LR; Gomez-Gutierrez JG
    Biotech Histochem; 2017; 92(3):167-174. PubMed ID: 28318334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nisin-induced expression of pediocin in dairy lactic acid bacteria.
    Renye JA; Somkuti GA
    J Appl Microbiol; 2010 Jun; 108(6):2142-51. PubMed ID: 19929951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Co-overexpression of Nisin Key Genes on Nisin Production Improvement in Lactococcus lactis LS01.
    Ni ZJ; Zhang XY; Liu F; Wang M; Hao RH; Ling PX; Zhu XQ
    Probiotics Antimicrob Proteins; 2017 Jun; 9(2):204-212. PubMed ID: 28303477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis.
    de Ruyter PG; Kuipers OP; Beerthuyzen MM; van Alen-Boerrigter I; de Vos WM
    J Bacteriol; 1996 Jun; 178(12):3434-9. PubMed ID: 8655538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis and randomization of the nisin-inducible promoter for tuning gene expression in Lactococcus lactis.
    Guo T; Hu S; Kong J
    Curr Microbiol; 2013 Jun; 66(6):548-54. PubMed ID: 23334299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Software-based screening for efficient sgRNAs in Lactococcus lactis.
    Wang H; Ai L; Xia Y; Wang G; Xiong Z; Song X
    J Sci Food Agric; 2024 Jan; 104(2):1200-1206. PubMed ID: 37647419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large increase in brazzein expression achieved by changing the plasmid /strain combination of the NICE system in Lactococcus lactis.
    Berlec A; Strukelj B
    Lett Appl Microbiol; 2009 Jun; 48(6):750-5. PubMed ID: 19413801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems.
    Douillard FP; Mahony J; Campanacci V; Cambillau C; van Sinderen D
    Plasmid; 2011 Sep; 66(3):129-35. PubMed ID: 21807023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.