These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29343813)

  • 1. The Drosophila Gr28bD product is a non-specific cation channel that can be used as a novel thermogenetic tool.
    Mishra A; Salari A; Berigan BR; Miguel KC; Amirshenava M; Robinson A; Zars BC; Lin JL; Milescu LS; Milescu M; Zars T
    Sci Rep; 2018 Jan; 8(1):901. PubMed ID: 29343813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons.
    Kim SH; Lee Y; Akitake B; Woodward OM; Guggino WB; Montell C
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8440-5. PubMed ID: 20404155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature sensation in Drosophila.
    Barbagallo B; Garrity PA
    Curr Opin Neurobiol; 2015 Oct; 34():8-13. PubMed ID: 25616212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An internal thermal sensor controlling temperature preference in Drosophila.
    Hamada FN; Rosenzweig M; Kang K; Pulver SR; Ghezzi A; Jegla TJ; Garrity PA
    Nature; 2008 Jul; 454(7201):217-20. PubMed ID: 18548007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila.
    Ni L; Bronk P; Chang EC; Lowell AM; Flam JO; Panzano VC; Theobald DL; Griffith LC; Garrity PA
    Nature; 2013 Aug; 500(7464):580-4. PubMed ID: 23925112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large-scale behavioral screen to identify neurons controlling motor programs in the Drosophila brain.
    Flood TF; Gorczyca M; White BH; Ito K; Yoshihara M
    G3 (Bethesda); 2013 Oct; 3(10):1629-37. PubMed ID: 23934998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila.
    Park J; Kondo S; Tanimoto H; Kohsaka H; Nose A
    Sci Rep; 2018 Jul; 8(1):10307. PubMed ID: 29985473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.
    Wu Y; Cao G; Pavlicek B; Luo X; Nitabach MN
    PLoS Biol; 2008 Nov; 6(11):e273. PubMed ID: 18986214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potency of transgenic effectors for neurogenetic manipulation in Drosophila larvae.
    Pauls D; von Essen A; Lyutova R; van Giesen L; Rosner R; Wegener C; Sprecher SG
    Genetics; 2015 Jan; 199(1):25-37. PubMed ID: 25359929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature integration at the AC thermosensory neurons in Drosophila.
    Tang X; Platt MD; Lagnese CM; Leslie JR; Hamada FN
    J Neurosci; 2013 Jan; 33(3):894-901. PubMed ID: 23325228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Drosophila TRPC channels by protein and lipid interactions.
    Raghu P
    Semin Cell Dev Biol; 2006 Dec; 17(6):646-53. PubMed ID: 17210264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae.
    Luo J; Shen WL; Montell C
    Nat Neurosci; 2017 Jan; 20(1):34-41. PubMed ID: 27749829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avoidance of heat and attraction to optogenetically induced sugar sensation as operant behavior in adult Drosophila.
    Nuwal N; Stock P; Hiemeyer J; Schmid B; Fiala A; Buchner E
    J Neurogenet; 2012 Sep; 26(3-4):298-305. PubMed ID: 22834571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetics in Drosophila.
    Kohsaka H; Nose A
    Adv Exp Med Biol; 2021; 1293():309-320. PubMed ID: 33398822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.
    Bath DE; Stowers JR; Hörmann D; Poehlmann A; Dickson BJ; Straw AD
    Nat Methods; 2014 Jul; 11(7):756-62. PubMed ID: 24859752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic inhibition of behavior with anion channelrhodopsins.
    Mohammad F; Stewart JC; Ott S; Chlebikova K; Chua JY; Koh TW; Ho J; Claridge-Chang A
    Nat Methods; 2017 Mar; 14(3):271-274. PubMed ID: 28114289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.
    Adachi R; Sasaki Y; Morita H; Komai M; Shirakawa H; Goto T; Furuyama A; Isono K
    J Neurogenet; 2012 Jun; 26(2):198-205. PubMed ID: 22794107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults.
    Hsiao PY; Wu MC; Lin YY; Fu CC; Chiang AS
    Methods Mol Biol; 2016; 1408():377-87. PubMed ID: 26965137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.