These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 29344598)
21. "Hot or cold": how do charge transfer states at the donor-acceptor interface of an organic solar cell dissociate? Bässler H; Köhler A Phys Chem Chem Phys; 2015 Nov; 17(43):28451-62. PubMed ID: 26456722 [TBL] [Abstract][Full Text] [Related]
22. Simplified charge separation energetics in a two-dimensional model for polymer-based photovoltaic cells. Sylvester-Hvid KO; Ratner MA J Phys Chem B; 2005 Jan; 109(1):200-8. PubMed ID: 16851005 [TBL] [Abstract][Full Text] [Related]
23. Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field. Nayak PK; Narasimhan KL; Cahen D J Phys Chem Lett; 2013 May; 4(10):1707-17. PubMed ID: 26282982 [TBL] [Abstract][Full Text] [Related]
24. Local Excitation/Charge-Transfer Hybridization Simultaneously Promotes Charge Generation and Reduces Nonradiative Voltage Loss in Nonfullerene Organic Solar Cells. Han G; Yi Y J Phys Chem Lett; 2019 Jun; 10(11):2911-2918. PubMed ID: 31088080 [TBL] [Abstract][Full Text] [Related]
25. Disorder vs Delocalization: Which Is More Advantageous for High-Efficiency Organic Solar Cells? Athanasopoulos S; Bässler H; Köhler A J Phys Chem Lett; 2019 Nov; 10(22):7107-7112. PubMed ID: 31661274 [TBL] [Abstract][Full Text] [Related]
26. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Zhang G; Chen XK; Xiao J; Chow PCY; Ren M; Kupgan G; Jiao X; Chan CCS; Du X; Xia R; Chen Z; Yuan J; Zhang Y; Zhang S; Liu Y; Zou Y; Yan H; Wong KS; Coropceanu V; Li N; Brabec CJ; Bredas JL; Yip HL; Cao Y Nat Commun; 2020 Aug; 11(1):3943. PubMed ID: 32770068 [TBL] [Abstract][Full Text] [Related]
27. Fill factor in organic solar cells can exceed the Shockley-Queisser limit. Trukhanov VA; Bruevich VV; Paraschuk DY Sci Rep; 2015 Jun; 5():11478. PubMed ID: 26095688 [TBL] [Abstract][Full Text] [Related]
28. Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield. Castro FA; Benmansour H; Moser JE; Graeff CF; Nüesch F; Hany R Phys Chem Chem Phys; 2009 Oct; 11(39):8886-94. PubMed ID: 20449035 [TBL] [Abstract][Full Text] [Related]
29. Why ultrafast charge separation occurs in bulk-heterojunction organic solar cells: a multichain tight binding model study. Huang Y; Zhang L; Hao Y Phys Chem Chem Phys; 2021 Oct; 23(39):22685-22691. PubMed ID: 34604887 [TBL] [Abstract][Full Text] [Related]
30. Charge separation pathways in a highly efficient polymer: fullerene solar cell material. Paraecattil AA; Banerji N J Am Chem Soc; 2014 Jan; 136(4):1472-82. PubMed ID: 24437495 [TBL] [Abstract][Full Text] [Related]
31. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences. Wenger OS Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886 [TBL] [Abstract][Full Text] [Related]
32. Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration. Aplan MP; Munro JM; Lee Y; Brigeman AN; Grieco C; Wang Q; Giebink NC; Dabo I; Asbury JB; Gomez ED ACS Appl Mater Interfaces; 2018 Nov; 10(46):39933-39941. PubMed ID: 30360072 [TBL] [Abstract][Full Text] [Related]
33. Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. Pal SK; Kesti T; Maiti M; Zhang F; Inganäs O; Hellström S; Andersson MR; Oswald F; Langa F; Osterman T; Pascher T; Yartsev A; Sundström V J Am Chem Soc; 2010 Sep; 132(35):12440-51. PubMed ID: 20704271 [TBL] [Abstract][Full Text] [Related]
34. Hot exciton dissociation in polymer solar cells. Grancini G; Maiuri M; Fazzi D; Petrozza A; Egelhaaf HJ; Brida D; Cerullo G; Lanzani G Nat Mater; 2013 Jan; 12(1):29-33. PubMed ID: 23223127 [TBL] [Abstract][Full Text] [Related]
35. Triphenylamine-Based Push-Pull Molecule for Photovoltaic Applications: From Synthesis to Ultrafast Device Photophysics. Kozlov OV; Liu X; Luponosov YN; Solodukhin AN; Toropynina VY; Min J; Buzin MI; Peregudova SM; Brabec CJ; Ponomarenko SA; Pshenichnikov MS J Phys Chem C Nanomater Interfaces; 2017 Mar; 121(12):6424-6435. PubMed ID: 28413568 [TBL] [Abstract][Full Text] [Related]
36. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces. Abramavicius V; Pranculis V; Melianas A; Inganäs O; Gulbinas V; Abramavicius D Sci Rep; 2016 Sep; 6():32914. PubMed ID: 27605035 [TBL] [Abstract][Full Text] [Related]
37. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Hammarström L Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365 [TBL] [Abstract][Full Text] [Related]