These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29345067)

  • 1. Supramolecular Gels Derived from the Salts of Variously Substituted Phenylacetic Acid and Dicyclohexylamine: Design, Synthesis, Structures, and Dye Adsorption.
    Roy R; Adalder TK; Dastidar P
    Chem Asian J; 2018 Mar; 13(5):552-559. PubMed ID: 29345067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary ammonium monocarboxylate synthon in designing supramolecular gels: a new series of chiral low-molecular-weight gelators derived from simple organic salts that are capable of generating and stabilizing gold nanoparticles.
    Das UK; Banerjee S; Dastidar P
    Chem Asian J; 2013 Dec; 8(12):3022-31. PubMed ID: 24019291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular synthons in noncovalent synthesis of a class of gelators derived from simple organic salts: instant gelation of organic fluids at room temperature via in situ synthesis of the gelators.
    Das UK; Trivedi DR; Adarsh NN; Dastidar P
    J Org Chem; 2009 Sep; 74(18):7111-21. PubMed ID: 19678626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Gels by Design: Towards the Development of Topical Gels for Self-Delivery Application.
    Parveen R; Dastidar P
    Chemistry; 2016 Jun; 22(27):9257-66. PubMed ID: 27226393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular synthons in designing low molecular mass gelling agents: L-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation.
    Sahoo P; Kumar DK; Raghavan SR; Dastidar P
    Chem Asian J; 2011 Apr; 6(4):1038-47. PubMed ID: 20967821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting supramolecular synthons in designing gelators derived from multiple drugs.
    Roy R; Deb J; Jana SS; Dastidar P
    Chemistry; 2014 Nov; 20(47):15320-4. PubMed ID: 25319197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dicyclohexylammonium bromoacetate: a low molecular mass organogelator with a one-dimensional secondary ammonium monocarboxylate (SAM) synthon.
    Rojek T; Lis T; Matczak-Jon E
    Acta Crystallogr C Struct Chem; 2015 Jul; 71(Pt 7):593-7. PubMed ID: 26146398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular Gels Derived from Simple Organic Salts of Flufenamic Acid: Design, Synthesis, Structures, and Plausible Biomedical Application.
    Parveen R; Jayamma B; Dastidar P
    ACS Biomater Sci Eng; 2019 May; 5(5):2180-2189. PubMed ID: 33405770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial library of primaryalkylammonium dicarboxylate gelators: a supramolecular synthon approach.
    Sahoo P; Adarsh NN; Chacko GE; Raghavan SR; Puranik VG; Dastidar P
    Langmuir; 2009 Aug; 25(15):8742-50. PubMed ID: 19301875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral gels derived from secondary ammonium salts of (1R,3S)-(+)-camphoric acid.
    Adalder TK; Adarsh NN; Sankolli R; Dastidar P
    Beilstein J Org Chem; 2010 Sep; 6():848-58. PubMed ID: 20978610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidrug-Containing, Salt-Based, Injectable Supramolecular Gels for Self-Delivery, Cell Imaging and Other Materials Applications.
    Roy R; Dastidar P
    Chemistry; 2016 Oct; 22(42):14929-14939. PubMed ID: 27578557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Synthon Approach in Developing Anti-Inflammatory Topical Gels for In Vivo Self-Delivery.
    Roy R; Dastidar P
    Chemistry; 2017 Nov; 23(62):15623-15627. PubMed ID: 28895213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular chirality in organo-, hydro-, and metallogels derived from bis-amides of L-(+)-tartaric acid: formation of highly aligned 1D silica fibers and evidence of 5-c net SnS topology in a metallogel network.
    Das UK; Dastidar P
    Chemistry; 2012 Oct; 18(41):13079-90. PubMed ID: 22961889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Orthogonal Hydrogen Bonding towards Designing Organic-Salt-Based Supramolecular Gelators: Synthesis, Structures, and Anticancer Properties.
    Chakraborty P; Dastidar P
    Chem Asian J; 2018 May; 13(10):1366-1378. PubMed ID: 29578316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Gels from Bis-amides of L-Phenylalanine: Synthesis, Structure and Material Applications.
    Manna U; Roy R; Datta HK; Dastidar P
    Chem Asian J; 2022 Oct; 17(19):e202200660. PubMed ID: 35912912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple Organic Salts Having a Naphthalenediimide (NDI) Core Display Multifunctional Properties: Gelation, Anticancer and Semiconducting Properties.
    Parveen R; Maity N; Dastidar P
    Chem Asian J; 2018 Jan; 13(2):170-180. PubMed ID: 29168620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Supramolecular Gelators: Challenges, Frustrations, and Hopes.
    Dastidar P
    Gels; 2019 Mar; 5(1):. PubMed ID: 30857187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures.
    Trivedi DR; Ballabh A; Dastidar P; Ganguly B
    Chemistry; 2004 Oct; 10(21):5311-22. PubMed ID: 15378683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol-Appended Benzimidazolium Salts: Synthesis, Aggregation, Sensing, Dye Adsorption, and Semiconducting Properties.
    Panja S; Bhattacharya S; Ghosh K
    Langmuir; 2017 Aug; 33(33):8277-8288. PubMed ID: 28756670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene-based fluorescent ambidextrous gelators: scaffolds for mechanically robust SWNT-gel nanocomposites.
    Mandal D; Kar T; Das PK
    Chemistry; 2014 Jan; 20(5):1349-58. PubMed ID: 24339266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.