These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 29345140)
1. High-Efficiency and Stable Organic Solar Cells Enabled by Dual Cathode Buffer Layers. Huai Z; Wang L; Sun Y; Fan R; Huang S; Zhao X; Li X; Fu G; Yang S ACS Appl Mater Interfaces; 2018 Feb; 10(6):5682-5692. PubMed ID: 29345140 [TBL] [Abstract][Full Text] [Related]
2. Solution-processed hybrid cathode interlayer for inverted organic solar cells. Wu Y; Zhang W; Li X; Min C; Jiu T; Zhu Y; Dai N; Fang J ACS Appl Mater Interfaces; 2013 Nov; 5(21):10428-32. PubMed ID: 24138511 [TBL] [Abstract][Full Text] [Related]
3. Effect of Dual Cathode Buffer Layer on the Charge Carrier Dynamics of rrP3HT:PCBM Based Bulk Heterojunction Solar Cell. Singh A; Dey A; Das D; Iyer PK ACS Appl Mater Interfaces; 2016 May; 8(17):10904-10. PubMed ID: 27075007 [TBL] [Abstract][Full Text] [Related]
4. Organic/Organic Cathode Bi-Interlayers Based on a Water-Soluble Nonconjugated Polymer and an Alcohol-Soluble Conjugated Polymer for High Efficiency Inverted Polymer Solar Cells. Cai P; Jia H; Chen J; Cao Y ACS Appl Mater Interfaces; 2015 Dec; 7(50):27871-7. PubMed ID: 26618891 [TBL] [Abstract][Full Text] [Related]
5. Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells. Liao Q; Kang Q; Yang Y; An C; Xu B; Hou J Adv Mater; 2020 Feb; 32(7):e1906557. PubMed ID: 31880003 [TBL] [Abstract][Full Text] [Related]
6. Cross-Linkable and Alcohol-Soluble Pyridine-Incorporated Polyfluorene Derivative as a Cathode Interface Layer for High-Efficiency and Stable Organic Solar Cells. Cai P; Huang X; Zhan T; Chen G; Qiu R; Zhang L; Xue X; Wang Z; Chen J ACS Appl Mater Interfaces; 2021 Mar; 13(10):12296-12304. PubMed ID: 33682400 [TBL] [Abstract][Full Text] [Related]
7. Nanographene-Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18. Liu L; Chen S; Qu Y; Gao X; Han L; Lin Z; Yang L; Wang W; Zheng N; Liang Y; Tan Y; Xia H; He F Adv Mater; 2021 Jul; 33(30):e2101279. PubMed ID: 34117664 [TBL] [Abstract][Full Text] [Related]
8. A Cost-Effective, Aqueous-Solution-Processed Cathode Interlayer Based on Organosilica Nanodots for Highly Efficient and Stable Organic Solar Cells. Cui M; Li D; Du X; Li N; Rong Q; Li N; Shui L; Zhou G; Wang X; Brabec CJ; Nian L Adv Mater; 2020 Sep; 32(38):e2002973. PubMed ID: 32790202 [TBL] [Abstract][Full Text] [Related]
9. Double-Dipole Induced by Incorporating Nitrogen-Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non-Fullerene Organic Solar Cells. Zheng Y; Zhao J; Liang H; Zhao Z; Kan Z Adv Sci (Weinh); 2023 Sep; 10(26):e2302460. PubMed ID: 37401166 [TBL] [Abstract][Full Text] [Related]
11. Regular Organic Solar Cells with Efficiency over 10% and Promoted Stability by Ligand- and Thermal Annealing-Free Al-Doped ZnO Cathode Interlayer. Liu X; Wang HQ; Li Y; Gui Z; Ming S; Usman K; Zhang W; Fang J Adv Sci (Weinh); 2017 Aug; 4(8):1700053. PubMed ID: 28852624 [TBL] [Abstract][Full Text] [Related]
12. Zirconium Oxide Doped Organosilica Nanodots as Light- and Charge-Management Cathode Interlayer for Highly Efficient and Stable Inverted Organic Solar Cells. Cui M; Rong Q; Wang R; Ye D; Li N; Nian L Small; 2024 Aug; 20(33):e2311339. PubMed ID: 38529739 [TBL] [Abstract][Full Text] [Related]
13. Industrial Kraft Lignin Based Binary Cathode Interface Layer Enables Enhanced Stability in High Efficiency Organic Solar Cells. Zhang Q; Liu T; Wilken S; Xiong S; Zhang H; Ribca I; Liao M; Liu X; Kroon R; Fabiano S; Gao F; Lawoko M; Bao Q; Österbacka R; Johansson M; Fahlman M Adv Mater; 2024 Mar; 36(9):e2307646. PubMed ID: 37812198 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Yin Z; Wei J; Zheng Q Adv Sci (Weinh); 2016 Aug; 3(8):1500362. PubMed ID: 27812480 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Cathode Interlayer Enables 17.4% Efficiency Binary Organic Solar Cells. Song H; Hu D; Lv J; Lu S; Haiyan C; Kan Z Adv Sci (Weinh); 2022 Mar; 9(8):e2105575. PubMed ID: 35040581 [TBL] [Abstract][Full Text] [Related]
16. Novel Nonconjugated Polymer as Cathode Buffer Layer for Efficient Organic Solar Cells. Cai Y; Chang L; You L; Fan B; Liu H; Sun Y ACS Appl Mater Interfaces; 2018 Jul; 10(28):24082-24089. PubMed ID: 29949344 [TBL] [Abstract][Full Text] [Related]
17. High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode Interlayers. Wu Y; Liu X; Li X; Zhang W; Wang HQ; Fang J ACS Appl Mater Interfaces; 2016 Feb; 8(4):2688-93. PubMed ID: 26757048 [TBL] [Abstract][Full Text] [Related]
18. Fullerene-Based Interlayers for Breaking Energy Barriers in Organic Solar Cells. Gu Y; Liu Y; Russell TP Chempluschem; 2020 Apr; 85(4):751-759. PubMed ID: 32286736 [TBL] [Abstract][Full Text] [Related]
19. Achieving the low interfacial tension by balancing crystallization and film-forming ability of the cathode interlayer for organic solar cells. Zhao Y; Liu X; Jing X; Liu Y; Liu H; Li S; Yu L; Dai S; Sun M J Colloid Interface Sci; 2022 Dec; 627():880-890. PubMed ID: 35901567 [TBL] [Abstract][Full Text] [Related]
20. Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer. Zheng D; Zhao L; Fan P; Ji R; Yu J Nanomaterials (Basel); 2017 Aug; 7(9):. PubMed ID: 28832508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]