These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 29345336)
21. Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. Liu Z; Eltoum IE; Guo B; Beck BH; Cloud GA; Lopez RD J Immunol; 2008 May; 180(9):6044-53. PubMed ID: 18424725 [TBL] [Abstract][Full Text] [Related]
22. Cancer immunotherapy with γδ T cells: many paths ahead of us. Kabelitz D; Serrano R; Kouakanou L; Peters C; Kalyan S Cell Mol Immunol; 2020 Sep; 17(9):925-939. PubMed ID: 32699351 [TBL] [Abstract][Full Text] [Related]
23. Adoptive immunotherapy of cancer using ex vivo expanded human gammadelta T cells: A new approach. Dokouhaki P; Han M; Joe B; Li M; Johnston MR; Tsao MS; Zhang L Cancer Lett; 2010 Nov; 297(1):126-36. PubMed ID: 20537791 [TBL] [Abstract][Full Text] [Related]
24. [γδ T cell-based cancer immunotherapy]. Matsushita H; Kakimi K Nihon Rinsho; 2017 Feb; 75(2):301-305. PubMed ID: 30562868 [TBL] [Abstract][Full Text] [Related]
25. Antitumor activity and some immunological properties of gammadelta T-cells from patients with gastrointestinal carcinomas. Murayama M; Tanaka Y; Yagi J; Uchiyama T; Ogawa K Anticancer Res; 2008; 28(5B):2921-31. PubMed ID: 19031935 [TBL] [Abstract][Full Text] [Related]
26. Harnessing γδ T cells in anticancer immunotherapy. Hannani D; Ma Y; Yamazaki T; Déchanet-Merville J; Kroemer G; Zitvogel L Trends Immunol; 2012 May; 33(5):199-206. PubMed ID: 22364810 [TBL] [Abstract][Full Text] [Related]
27. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. Xu J; Yu Y; Zhang Y; Dai H; Yang Q; Wang B; Ma Q; Chen Y; Xu F; Shi X; Liu Z; Wang C Nat Nanotechnol; 2024 Oct; 19(10):1569-1578. PubMed ID: 39054386 [TBL] [Abstract][Full Text] [Related]
28. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Paul S; Lal G Int J Cancer; 2016 Sep; 139(5):976-85. PubMed ID: 27012367 [TBL] [Abstract][Full Text] [Related]
29. Universal Ready-to-Use Immunotherapeutic Approach for the Treatment of Cancer: Expanded and Activated Polyclonal γδ Memory T Cells. Polito VA; Cristantielli R; Weber G; Del Bufalo F; Belardinilli T; Arnone CM; Petretto A; Antonucci L; Giorda E; Tumino N; Pitisci A; De Angelis B; Quintarelli C; Locatelli F; Caruana I Front Immunol; 2019; 10():2717. PubMed ID: 31824502 [TBL] [Abstract][Full Text] [Related]
30. Zoledronate-activated Vγ9γδ T cell-based immunotherapy is feasible and restores the impairment of γδ T cells in patients with solid tumors. Noguchi A; Kaneko T; Kamigaki T; Fujimoto K; Ozawa M; Saito M; Ariyoshi N; Goto S Cytotherapy; 2011 Jan; 13(1):92-7. PubMed ID: 20831354 [TBL] [Abstract][Full Text] [Related]
31. Editorial: γδ T Cells in Cancer. Coffelt SB; Kabelitz D; Silva-Santos B; Kuball J; Born W; Bank I Front Immunol; 2020; 11():602411. PubMed ID: 33329597 [No Abstract] [Full Text] [Related]
33. Harnessing the power of Vδ2 cells in cancer immunotherapy. Fowler DW; Bodman-Smith MD Clin Exp Immunol; 2015 Apr; 180(1):1-10. PubMed ID: 25469879 [TBL] [Abstract][Full Text] [Related]
34. Key players of immunosuppression in epithelial malignancies: Tumor-infiltrating myeloid cells and γδ T cells. Tamuli B; Sharma S; Patkar M; Biswas S Cancer Rep (Hoboken); 2024 May; 7(5):e2066. PubMed ID: 38703051 [TBL] [Abstract][Full Text] [Related]
35. Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Gomes AQ; Martins DS; Silva-Santos B Cancer Res; 2010 Dec; 70(24):10024-7. PubMed ID: 21159627 [TBL] [Abstract][Full Text] [Related]
36. CRTAM receptor engagement by Necl-2 on tumor cells triggers cell death of activated Vγ9Vδ2 T cells. Dessarthe B; Thedrez A; Latouche JB; Cabillic F; Drouet A; Daniel P; de La Pintière CT; Catros V; Toutirais O J Immunol; 2013 May; 190(9):4868-76. PubMed ID: 23530148 [TBL] [Abstract][Full Text] [Related]
37. Distribution and functions of γδ T cells infiltrated in the ovarian cancer microenvironment. Chen X; Shang W; Xu R; Wu M; Zhang X; Huang P; Wang F; Pan S J Transl Med; 2019 May; 17(1):144. PubMed ID: 31064389 [TBL] [Abstract][Full Text] [Related]
38. Expression of intercellular adhesion molecule (ICAM)-1 or ICAM-2 is critical in determining sensitivity of pancreatic cancer cells to cytolysis by human gammadelta-T cells: implications in the design of gammadelta-T-cell-based immunotherapies for pancreatic cancer. Liu Z; Guo B; Lopez RD J Gastroenterol Hepatol; 2009 May; 24(5):900-11. PubMed ID: 19175829 [TBL] [Abstract][Full Text] [Related]
39. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. Ribot JC; Ribeiro ST; Correia DV; Sousa AE; Silva-Santos B J Immunol; 2014 Mar; 192(5):2237-43. PubMed ID: 24489097 [TBL] [Abstract][Full Text] [Related]
40. Tumor-Infiltrating γδ T Lymphocytes: Pathogenic Role, Clinical Significance, and Differential Programing in the Tumor Microenvironment. Lo Presti E; Dieli F; Meraviglia S Front Immunol; 2014; 5():607. PubMed ID: 25505472 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]