These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29345930)

  • 41. Pharmacological Inhibitors of NAD Biosynthesis as Potential An ticancer Agents.
    Lucas S; Soave C; Nabil G; Ahmed ZSO; Chen G; El-Banna HA; Dou QP; Wang J
    Recent Pat Anticancer Drug Discov; 2017; 12(3):190-207. PubMed ID: 28637419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of mechanism of interaction of truncated isoniazid-nicotinamide adenine dinucleotide adduct against multiple enzymes of Mycobacterium tuberculosis by a computational approach.
    Jena L; Deshmukh S; Waghmare P; Kumar S; Harinath BC
    Int J Mycobacteriol; 2015 Dec; 4(4):276-83. PubMed ID: 26964808
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Corroborative cobalt and zinc model compounds of alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD).
    Gätjens J; Mullins CS; Kampf JW; Thuéry P; Pecoraro VL
    Dalton Trans; 2009 Jan; (1):51-62. PubMed ID: 19081971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure based mimicking of Phthalic acid esters (PAEs) and inhibition of hACMSD, an important enzyme of the tryptophan kynurenine metabolism pathway.
    Singh N; Dalal V; Kumar P
    Int J Biol Macromol; 2018 Mar; 108():214-224. PubMed ID: 29217180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of transient intermediates in the metal-dependent nonoxidative decarboxylation catalyzed by alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase.
    Li T; Ma JK; Hosler JP; Davidson VL; Liu A
    J Am Chem Soc; 2007 Aug; 129(30):9278-9. PubMed ID: 17625866
    [No Abstract]   [Full Text] [Related]  

  • 46. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.
    Wang G; Pichersky E
    Plant J; 2007 Mar; 49(6):1020-9. PubMed ID: 17335512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Regulatory Role of NAD in Human and Animal Cells.
    Kulikova VA; Gromyko DV; Nikiforov AA
    Biochemistry (Mosc); 2018 Jul; 83(7):800-812. PubMed ID: 30200865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The expression of CG9940 affects the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila.
    Wen DT; Zheng L; Ni L; Wang H; Feng Y; Zhang M
    Exp Gerontol; 2016 Oct; 83():6-14. PubMed ID: 27448710
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PGC1α regulates ACMSD expression through cooperation with HNF4α.
    Koshiguchi M; Hirai S; Egashira Y
    Amino Acids; 2018 Dec; 50(12):1769-1773. PubMed ID: 30232574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cross-talk in NAD
    James Theoga Raj C; Lin SJ
    Curr Genet; 2019 Oct; 65(5):1113-1119. PubMed ID: 30993413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of pituitary hormones on alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in rat.
    Sanada H; Miyazaki M
    J Nutr Sci Vitaminol (Tokyo); 1980; 26(6):607-16. PubMed ID: 7241241
    [No Abstract]   [Full Text] [Related]  

  • 52. Therapeutic potential of nicotinamide adenine dinucleotide (NAD).
    Arenas-Jal M; Suñé-Negre JM; García-Montoya E
    Eur J Pharmacol; 2020 Jul; 879():173158. PubMed ID: 32360833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor.
    Osterman A
    EcoSal Plus; 2009 Aug; 3(2):. PubMed ID: 26443758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on the biosynthesis of nicotinamide adenine dinucleotide (NAD) in mammals and its regulatory mechanism. I.
    Ichiyama A; Nakamura S; Nishizuka Y
    Arzneimittelforschung; 1967 Nov; 17(11):1346-55. PubMed ID: 4299819
    [No Abstract]   [Full Text] [Related]  

  • 55. In vitro inhibition of lysine decarboxylase activity by organophosphate esters.
    Wang S; Wan B; Zhang L; Yang Y; Guo LH
    Biochem Pharmacol; 2014 Dec; 92(3):506-16. PubMed ID: 25264276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of 3-isopropylmalate dehydrogenase in complex with NAD(+) and a designed inhibitor.
    Nango E; Yamamoto T; Kumasaka T; Eguchi T
    Bioorg Med Chem; 2009 Nov; 17(22):7789-94. PubMed ID: 19833522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure-activity relationships.
    Deaton DN; Haffner CD; Henke BR; Jeune MR; Shearer BG; Stewart EL; Stuart JD; Ulrich JC
    Bioorg Med Chem; 2018 May; 26(8):2107-2150. PubMed ID: 29576271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Host NAD+ metabolism and infections: therapeutic implications.
    Singhal A; Cheng CY
    Int Immunol; 2019 Feb; 31(2):59-67. PubMed ID: 30329059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ENZYME REPRESSION IN THE REGULATION OF NICOTINAMIDE ADENINE DINUCLEOTIDE BIOSYNTHESIS IN BACILLUS SUBTILIS.
    GHOLSON RK; KORI J
    J Biol Chem; 1964 Jul; 239():PC2399. PubMed ID: 14216419
    [No Abstract]   [Full Text] [Related]  

  • 60. Cell stress response impairs de novo NAD+ biosynthesis in the kidney.
    Bignon Y; Rinaldi A; Nadour Z; Poindessous V; Nemazanyy I; Lenoir O; Fohlen B; Weill-Raynal P; Hertig A; Karras A; Galichon P; Naesens M; Anglicheau D; Cippà PE; Pallet N
    JCI Insight; 2022 Jan; 7(1):. PubMed ID: 34793337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.