BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29346013)

  • 1. Purification of Lymphocytes by Acoustic Separation in Plastic Microchannels.
    Lissandrello C; Dubay R; Kotz KT; Fiering J
    SLAS Technol; 2018 Aug; 23(4):352-363. PubMed ID: 29346013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved expansion of T cells in culture when isolated with an equipment-free, high-throughput, flow-through microfluidic module versus traditional density gradient centrifugation.
    Strachan BC; Xia H; Vörös E; Gifford SC; Shevkoplyas SS
    Cytotherapy; 2019 Feb; 21(2):234-245. PubMed ID: 30660490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation.
    Gu Y; Chen C; Wang Z; Huang PH; Fu H; Wang L; Wu M; Chen Y; Gao T; Gong J; Kwun J; Arepally GM; Huang TJ
    Lab Chip; 2019 Jan; 19(3):394-402. PubMed ID: 30631874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput acoustic separation of platelets from whole blood.
    Chen Y; Wu M; Ren L; Liu J; Whitley PH; Wang L; Huang TJ
    Lab Chip; 2016 Sep; 16(18):3466-72. PubMed ID: 27477388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood-bacteria separation.
    Silva R; Dow P; Dubay R; Lissandrello C; Holder J; Densmore D; Fiering J
    Biomed Microdevices; 2017 Sep; 19(3):70. PubMed ID: 28779375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the efficiency of a cell separation process by the extent of elimination of a contaminating cell type.
    Bruyninckx WJ; Vanneste WH; Leijh PJ; Van Furth R; Vercauteren RE
    Anal Biochem; 1990 Nov; 191(1):144-55. PubMed ID: 2077936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of large numbers of highly purified lymphocytes and monocytes with a modified centrifugal elutriation technique.
    Figdor CG; Bont WS; De Vries JE; Van Es WL
    J Immunol Methods; 1981; 40(3):275-88. PubMed ID: 7252163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell separation in the buffy coat.
    Sutton DW; Chen PC; Schmid-Schönbein GW
    Biorheology; 1988; 25(4):663-73. PubMed ID: 3252919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysics: using sound to move cells.
    Marx V
    Nat Methods; 2015 Jan; 12(1):41-4. PubMed ID: 25549269
    [No Abstract]   [Full Text] [Related]  

  • 12. Design and simulation of a microfluidic device for acoustic cell separation.
    Shamloo A; Boodaghi M
    Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program.
    Powell DJ; Brennan AL; Zheng Z; Huynh H; Cotte J; Levine BL
    Cytotherapy; 2009; 11(7):923-35. PubMed ID: 19903104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collection, Storage, and Preparation of Human Blood Cells.
    Dagur PK; McCoy JP
    Curr Protoc Cytom; 2015 Jul; 73():5.1.1-5.1.16. PubMed ID: 26132177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrifugo-Magnetophoretic Purification of CD4+ Cells from Whole Blood Toward Future HIV/AIDS Point-of-Care Applications.
    Glynn M; Kirby D; Chung D; Kinahan DJ; Kijanka G; Ducrée J
    J Lab Autom; 2014 Jun; 19(3):285-96. PubMed ID: 24056858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip.
    Hu XJ; Liu HL; Jin YX; Liang L; Zhu DM; Zhu XQ; Guo SS; Zhou FL; Yang Y
    Lab Chip; 2018 Nov; 18(22):3405-3412. PubMed ID: 30357194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel method for continuous cell separation by density gradient centrifugation: evaluation of a miniature separation column.
    Shiono H; Ito Y
    Prep Biochem Biotechnol; 2003 May; 33(2):87-100. PubMed ID: 12784880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable high-throughput acoustophoresis in arrayed plastic microchannels.
    Dubay R; Lissandrello C; Swierk P; Moore N; Doty D; Fiering J
    Biomicrofluidics; 2019 May; 13(3):034105. PubMed ID: 31123537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of lymphocytes and granulocytes removed from whole blood by buffy coat depletion. Comparison of an automated bottom-and-Top processing system and the manual technique.
    Rácz Z
    Arch Med Res; 2000; 31(1):53-7. PubMed ID: 10767481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells.
    Ghanaati S; Booms P; Orlowska A; Kubesch A; Lorenz J; Rutkowski J; Landes C; Sader R; Kirkpatrick C; Choukroun J
    J Oral Implantol; 2014 Dec; 40(6):679-89. PubMed ID: 24945603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.