These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29346018)

  • 1. The Tortoise and the Hare: Interactions between Reinforcement Learning and Working Memory.
    Collins AGE
    J Cogn Neurosci; 2018 Oct; 30(10):1422-1432. PubMed ID: 29346018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.
    Collins AGE; Albrecht MA; Waltz JA; Gold JM; Frank MJ
    Biol Psychiatry; 2017 Sep; 82(6):431-439. PubMed ID: 28651789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.
    Collins AGE; Frank MJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2502-2507. PubMed ID: 29463751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Working Memory Load Strengthens Reward Prediction Errors.
    Collins AGE; Ciullo B; Frank MJ; Badre D
    J Neurosci; 2017 Apr; 37(16):4332-4342. PubMed ID: 28320846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Working memory contributions to reinforcement learning impairments in schizophrenia.
    Collins AG; Brown JK; Gold JM; Waltz JA; Frank MJ
    J Neurosci; 2014 Oct; 34(41):13747-56. PubMed ID: 25297101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Working memory and response selection: a computational account of interactions among cortico-basalganglio-thalamic loops.
    Schroll H; Vitay J; Hamker FH
    Neural Netw; 2012 Feb; 26():59-74. PubMed ID: 22075035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distentangling the systems contributing to changes in learning during adolescence.
    Master SL; Eckstein MK; Gotlieb N; Dahl R; Wilbrecht L; Collins AGE
    Dev Cogn Neurosci; 2020 Feb; 41():100732. PubMed ID: 31826837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain-Specific Working Memory, But Not Dopamine-Related Genetic Variability, Shapes Reward-Based Motor Learning.
    Holland P; Codol O; Oxley E; Taylor M; Hamshere E; Joseph S; Huffer L; Galea JM
    J Neurosci; 2019 Nov; 39(47):9383-9396. PubMed ID: 31604835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatosensory working memory in human reinforcement-based motor learning.
    Sidarta A; van Vugt FT; Ostry DJ
    J Neurophysiol; 2018 Dec; 120(6):3275-3286. PubMed ID: 30354856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Index of Reinforcement Learning Predicts Improved Stimulus-Response Retention under High Working Memory Load.
    Rac-Lubashevsky R; Cremer A; Collins AGE; Frank MJ; Schwabe L
    J Neurosci; 2023 Apr; 43(17):3131-3143. PubMed ID: 36931706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of visual representations within working memory for paired-associate and serial order of spoken words.
    Ueno T; Saito S
    Q J Exp Psychol (Hove); 2013 Sep; 66(9):1858-72. PubMed ID: 23472610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward associations impact both iconic and visual working memory.
    Infanti E; Hickey C; Turatto M
    Vision Res; 2015 Feb; 107():22-9. PubMed ID: 25481632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis.
    Collins AG; Frank MJ
    Eur J Neurosci; 2012 Apr; 35(7):1024-35. PubMed ID: 22487033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Errorless learning and working memory: the impact of errors, distractors, and memory span load on immediate recall in healthy adults.
    Nordvik JE; Schanke AK; Landro NI
    J Clin Exp Neuropsychol; 2011 Jun; 33(5):587-95. PubMed ID: 21298584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of working memory for reinforcement learning in older adults varies with timescale of learning.
    van de Vijver I; Ligneul R
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2020 Sep; 27(5):654-676. PubMed ID: 31544587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder.
    Frank MJ; Santamaria A; O'Reilly RC; Willcutt E
    Neuropsychopharmacology; 2007 Jul; 32(7):1583-99. PubMed ID: 17164816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning at Variable Attentional Load Requires Cooperation of Working Memory, Meta-learning, and Attention-augmented Reinforcement Learning.
    Womelsdorf T; Watson MR; Tiesinga P
    J Cogn Neurosci; 2021 Dec; 34(1):79-107. PubMed ID: 34813644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Working memory capacity and categorization: individual differences and modeling.
    Lewandowsky S
    J Exp Psychol Learn Mem Cogn; 2011 May; 37(3):720-38. PubMed ID: 21417512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.