These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29346102)

  • 1. Impedance Measures During in vitro Cochlear Implantation Predict Array Positioning.
    Giardina CK; Krause ES; Koka K; Fitzpatrick DC
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):327-335. PubMed ID: 29346102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of modiolar proximity through bipolar impedance measurements.
    Pile J; Sweeney AD; Kumar S; Simaan N; Wanna GB
    Laryngoscope; 2017 Jun; 127(6):1413-1419. PubMed ID: 27557458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards inferring positioning of straight cochlear-implant electrode arrays during insertion using real-time impedance sensing.
    Riojas KE; Bruns TL; Granna J; Smetak MR; Labadie RF; Webster RJ
    Int J Med Robot; 2024 Feb; 20(1):e2609. PubMed ID: 38536718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Cochlear Implant Electrode Placement Using Monopolar, Three-Point and Four-Point Impedance Measurements.
    Sijgers L; Huber A; Tabibi S; Grosse J; Roosli C; Boyle P; Koka K; Dillier N; Pfiffner F; Dalbert A
    IEEE Trans Biomed Eng; 2022 Aug; 69(8):2533-2544. PubMed ID: 35143392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants.
    Collins A; Foghsgaard S; Druce E; Margani V; Mejia O; O'Leary S
    Otol Neurotol; 2024 Mar; 45(3):238-244. PubMed ID: 38238914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Localization of Cochlear-Implant Electrode Arrays Using Bipolar Impedance Sensing.
    Bruns TL; Riojas KE; Labadie RF; Webster Iii RJ
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):718-724. PubMed ID: 34379586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Translocation of Cochlear Implant Electrode Arrays by Intracochlear Impedance Measurements.
    Dong Y; Briaire JJ; Siebrecht M; Stronks HC; Frijns JHM
    Ear Hear; 2021; 42(5):1397-1404. PubMed ID: 33974777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical impedance guides electrode array in cochlear implantation using machine learning and robotic feeder.
    Hafeez N; Du X; Boulgouris N; Begg P; Irving R; Coulson C; Tourrel G
    Hear Res; 2021 Dec; 412():108371. PubMed ID: 34689069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic pullback technique of a precurved cochlear-implant electrode array using real-time impedance sensing feedback.
    Riojas KE; Bruns TL; Granna J; Webster RJ; Labadie RF
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):413-421. PubMed ID: 36331796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraoperative Impedance-Based Estimation of Cochlear Implant Electrode Array Insertion Depth.
    Aebischer P; Meyer S; Caversaccio M; Wimmer W
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):545-555. PubMed ID: 32746052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial Operative Experience and Short-term Hearing Preservation Results With a Mid-scala Cochlear Implant Electrode Array.
    Svrakic M; Roland JT; McMenomey SO; Svirsky MA
    Otol Neurotol; 2016 Dec; 37(10):1549-1554. PubMed ID: 27755356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postoperative Impedance-Based Estimation of Cochlear Implant Electrode Insertion Depth.
    Schraivogel S; Aebischer P; Wagner F; Weder S; Mantokoudis G; Caversaccio M; Wimmer W
    Ear Hear; 2023 Nov-Dec 01; 44(6):1379-1388. PubMed ID: 37157125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Real-time Remote Cochlear Implant Capacitive Impedance Measurements: A Glimpse Into the Implanted Inner Ear.
    Di Lella FA; De Marco D; Fernández F; Parreño M; Boccio CM
    Otol Neurotol; 2019 Jun; 40(5S Suppl 1):S18-S22. PubMed ID: 31225818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-Point Impedance Changes After Cochlear Implantation for Lateral Wall and Perimodiolar Implants.
    Razmovski T; Bester C; Collins A; Tan E; O'Leary SJ
    Otol Neurotol; 2022 Dec; 43(10):e1107-e1114. PubMed ID: 36351225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Four-Point Impedance to Detect and Locate Blood during Cochlear Implantation
    Razmovski T; Collins A; Bester C; O'Leary S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of Perimodiolar Electrode Position for Psychoacoustic Discrimination in Cochlear Implantation.
    Ramos Macias A; Perez Zaballos MT; Ramos de Miguel A; Cervera Paz J
    Otol Neurotol; 2017 Dec; 38(10):e429-e437. PubMed ID: 29135866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the impedance of cochlear implant devices within 24 hours of their implantation.
    Lin DP; Chen JK; Tung TH; Li LP
    PLoS One; 2019; 14(9):e0222711. PubMed ID: 31536550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Postoperative dynamics of electrode impedance changes in children with cochlear implants].
    Kechiyan DK; Bakhshinyan VV; Tavartkiladze GA
    Vestn Otorinolaringol; 2020; 85(5):29-32. PubMed ID: 33140930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance, neural response telemetry, and speech perception outcomes after reimplantation of cochlear implants in children.
    Birman CS; Sanli H; Gibson WP; Elliott EJ
    Otol Neurotol; 2014 Sep; 35(8):1385-93. PubMed ID: 24662639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Insertion Models Predicting Cochlear Implant Electrode Position.
    van der Marel KS; Briaire JJ; Wolterbeek R; Verbist BM; Frijns JH
    Ear Hear; 2016; 37(4):473-82. PubMed ID: 26760199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.