These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29346532)

  • 1. What color should glacier algae be? An ecological role for red carbon in the cryosphere.
    Dial RJ; Ganey GQ; Skiles SM
    FEMS Microbiol Ecol; 2018 Mar; 94(3):. PubMed ID: 29346532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pigment signatures of algal communities and their implications for glacier surface darkening.
    Halbach L; Chevrollier LA; Doting EL; Cook JM; Jensen MB; Benning LG; Bradley JA; Hansen M; Lund-Hansen LC; Markager S; Sorrell BK; Tranter M; Trivedi CB; Winkel M; Anesio AM
    Sci Rep; 2022 Oct; 12(1):17643. PubMed ID: 36271236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations of algal communities cause darkening of a Greenland glacier.
    Lutz S; Anesio AM; Jorge Villar SE; Benning LG
    FEMS Microbiol Ecol; 2014 Aug; 89(2):402-14. PubMed ID: 24920320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snow and Glacial Algae: A Review
    Hoham RW; Remias D
    J Phycol; 2020 Apr; 56(2):264-282. PubMed ID: 31825096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular compositions, optical properties, and implications of dissolved brown carbon in snow/ice on the Tibetan Plateau glaciers.
    Li X; Fu P; Tripathee L; Yan F; Hu Z; Yu F; Chen Q; Li J; Chen Q; Cao J; Kang S
    Environ Int; 2022 Jun; 164():107276. PubMed ID: 35537366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet.
    Williamson CJ; Cook J; Tedstone A; Yallop M; McCutcheon J; Poniecka E; Campbell D; Irvine-Fynn T; McQuaid J; Tranter M; Perkins R; Anesio A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5694-5705. PubMed ID: 32094168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic carbon addition stimulates snow algae primary productivity.
    Hamilton TL; Havig JR
    ISME J; 2020 Mar; 14(3):857-860. PubMed ID: 29379176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Black carbon and dust in the Third Pole glaciers: Revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation.
    Li Y; Kang S; Zhang X; Chen J; Schmale J; Li X; Zhang Y; Niu H; Li Z; Qin X; He X; Yang W; Zhang G; Wang S; Shao L; Tian L
    Sci Total Environ; 2021 Oct; 789():147746. PubMed ID: 34082201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of decreased snow accumulation and increased light-absorbing particles accelerates glacier retreat in the Tibetan Plateau.
    Li C; Yan F; Zhang C; Kang S; Rai M; Zhang H; Hu S; He C
    Sci Total Environ; 2022 Feb; 809():151095. PubMed ID: 34688751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End of the Little Ice Age in the Alps forced by industrial black carbon.
    Painter TH; Flanner MG; Kaser G; Marzeion B; VanCuren RA; Abdalati W
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15216-21. PubMed ID: 24003138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Summer Dynamics of Microbial Diversity on a Mountain Glacier.
    Hotaling S; Price TL; Hamilton TL
    mSphere; 2022 Dec; 7(6):e0050322. PubMed ID: 36342146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow.
    Remias D; Pichrtová M; Pangratz M; Lütz C; Holzinger A
    FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw030. PubMed ID: 26884467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau.
    Niu H; Kang S; Wang H; Du J; Pu T; Zhang G; Lu X; Yan X; Wang S; Shi X
    Environ Pollut; 2020 Feb; 257():113541. PubMed ID: 31761593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant viral signatures on the Greenland ice sheet.
    Perini L; Sipes K; Zervas A; Bellas C; Lutz S; Moniruzzaman M; Mourot R; Benning LG; Tranter M; Anesio AM
    Microbiome; 2024 May; 12(1):91. PubMed ID: 38760842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of carbonaceous aerosol concentration in snow and ice of glaciers in Tianshan Mountains].
    Wang SJ; Zhang MJ; Wang FT; Li ZQ
    Huan Jing Ke Xue; 2012 Mar; 33(3):679-86. PubMed ID: 22624355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dust dominates the summer melting of glacier ablation zones on the northeastern Tibetan Plateau.
    Li Y; Kang S; Zhang X; Li C; Chen J; Qin X; Shao L; Tian L
    Sci Total Environ; 2023 Jan; 856(Pt 2):159214. PubMed ID: 36208735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau.
    Li X; Kang S; He X; Qu B; Tripathee L; Jing Z; Paudyal R; Li Y; Zhang Y; Yan F; Li G; Li C
    Sci Total Environ; 2017 Jun; 587-588():482-490. PubMed ID: 28258749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated 'Omics', Targeted Metabolite and Single-cell Analyses of Arctic Snow Algae Functionality and Adaptability.
    Lutz S; Anesio AM; Field K; Benning LG
    Front Microbiol; 2015; 6():1323. PubMed ID: 26635781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing.
    Remias D; Procházková L; Nedbalová L; Benning LG; Lutz S
    FEMS Microbiol Ecol; 2023 Nov; 99(12):. PubMed ID: 37880981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates.
    Niu H; Kang S; Shi X; Paudyal R; He Y; Li G; Wang S; Pu T; Shi X
    Sci Total Environ; 2017 Mar; 581-582():848-856. PubMed ID: 28089534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.