These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2934687)

  • 1. Investigations into the sequence-selective binding of mithramycin and related ligands to DNA.
    Fox KR; Howarth NR
    Nucleic Acids Res; 1985 Dec; 13(24):8695-714. PubMed ID: 2934687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II).
    Van Dyke MW; Dervan PB
    Biochemistry; 1983 May; 22(10):2373-7. PubMed ID: 6222762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-sequence binding preference of the GC-selective ligand mithramycin. Deoxyribonuclease-I/deoxyribonuclease-II and hydroxy-radical footprinting at CCCG, CCGC, CGGC, GCCC and GGGG flanked by (AT)n and An.Tn.
    Carpenter ML; Marks JN; Fox KR
    Eur J Biochem; 1993 Aug; 215(3):561-6. PubMed ID: 8394809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution hydroxyl radical footprinting of the binding of mithramycin and related antibiotics to DNA.
    Cons BM; Fox KR
    Nucleic Acids Res; 1989 Jul; 17(14):5447-59. PubMed ID: 2548163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA structural variations produced by actinomycin and distamycin as revealed by DNAase I footprinting.
    Fox KR; Waring MJ
    Nucleic Acids Res; 1984 Dec; 12(24):9271-85. PubMed ID: 6393053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the antitumor antibiotic mithramycin on the structure of repetitive DNA regions adjacent to its GC-rich binding site.
    Cons BM; Fox KR
    Biochemistry; 1991 Jun; 30(25):6314-21. PubMed ID: 1829382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance comparison of the binding sites of mithramycin and chromomycin on the self-complementary oligonucleotide d(ACCCGGGT)2. Evidence that the saccharide chains have a role in sequence specificity.
    Keniry MA; Banville DL; Simmonds PM; Shafer R
    J Mol Biol; 1993 Jun; 231(3):753-67. PubMed ID: 8515449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small ligands that neither bind to nor alter the structure of d(GA x TC)n sequences in DNA.
    Vaquero A; Portugal J
    FEBS Lett; 1997 Dec; 420(2-3):156-60. PubMed ID: 9459301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA binding characteristics of mithramycin and chromomycin analogues obtained by combinatorial biosynthesis.
    Barceló F; Ortiz-Lombardía M; Martorell M; Oliver M; Méndez C; Salas JA; Portugal J
    Biochemistry; 2010 Dec; 49(49):10543-52. PubMed ID: 21067184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific staining of DNA with the fluorescent antibiotics, mithramycin, chromomycin, and olivomycin.
    Crissman HA; Tobey RA
    Methods Cell Biol; 1990; 33():97-103. PubMed ID: 1707496
    [No Abstract]   [Full Text] [Related]  

  • 11. Polymerase-chain reaction as a tool for investigations on sequence-selectivity of DNA-drugs interactions.
    Passadore M; Feriotto G; Bianchi N; Aguiari G; Mischiati C; Piva R; Gambari R
    J Biochem Biophys Methods; 1994 Dec; 29(3-4):307-19. PubMed ID: 7699207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Footprinting reveals that nogalamycin and actinomycin shuffle between DNA binding sites.
    Fox KR; Waring MJ
    Nucleic Acids Res; 1986 Mar; 14(5):2001-14. PubMed ID: 2421246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Footprinting studies of sequence recognition by mithramycin.
    Cons BM; Fox KR
    Anticancer Drug Des; 1990 Feb; 5(1):93-7. PubMed ID: 2156518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the DNA-binding antitumor antibiotics, chromomycin and mithramycin with erythroid spectrin.
    Majee S; Dasgupta D; Chakrabarti A
    Eur J Biochem; 1999 Mar; 260(3):619-26. PubMed ID: 10102989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualising the dissociation of sequence selective ligands from individual binding sites on DNA.
    Fletcher MC; Fox KR
    FEBS Lett; 1996 Feb; 380(1-2):118-22. PubMed ID: 8603718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of DNA recognition by anticancer antibiotics, chromomycin A(3), and mithramycin: roles of minor groove width and ligand flexibility.
    Chakrabarti S; Bhattacharyya D; Dasgupta D
    Biopolymers; 2000-2001; 56(2):85-95. PubMed ID: 11592055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Footprinting studies on the effect of echinomycin on the structure of a bent DNA fragment.
    Fox KR; Kentebe E
    Biochem J; 1990 Jul; 269(1):217-21. PubMed ID: 2375751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of mithramycin with isolated GC and CG sites.
    Carpenter ML; Cassidy SA; Fox KR
    J Mol Recognit; 1994 Sep; 7(3):189-97. PubMed ID: 7880543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCR-based development of DNA substrates containing modified bases: an efficient system for investigating the role of the exocyclic groups in chemical and structural recognition by minor groove binding drugs and proteins.
    Bailly C; Payet D; Travers AA; Waring MJ
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13623-8. PubMed ID: 8942984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of chromomycin A3 and mithramycin with the sequence d(TAGCTAGCTA)2.
    Chakrabarti S; Dasgupta D
    Indian J Biochem Biophys; 2001; 38(1-2):64-70. PubMed ID: 11563333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.