These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2934687)

  • 21. Overview of the interaction between chemotherapeutic agents and DNA.
    Waring MJ
    Drugs Exp Clin Res; 1986; 12(6-7):441-53. PubMed ID: 2427296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA-sequence specific recognition by a thiazole analogue of netropsin: a comparative footprinting study.
    Plouvier B; Bailly C; Houssin R; Rao KE; Lown WJ; Hénichart JP; Waring MJ
    Nucleic Acids Res; 1991 Nov; 19(21):5821-9. PubMed ID: 1658746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence-specific binding of echinomycin to DNA: evidence for conformational changes affecting flanking sequences.
    Low CM; Drew HR; Waring MJ
    Nucleic Acids Res; 1984 Jun; 12(12):4865-79. PubMed ID: 6204275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells.
    Bianchi N; Osti F; Rutigliano C; Corradini FG; Borsetti E; Tomassetti M; Mischiati C; Feriotto G; Gambari R
    Br J Haematol; 1999 Feb; 104(2):258-65. PubMed ID: 10050705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNase I footprinting of triple helix formation at polypurine tracts by acridine-linked oligopyrimidines: stringency, structural changes and interaction with minor groove binding ligands.
    Stonehouse TJ; Fox KR
    Biochim Biophys Acta; 1994 Aug; 1218(3):322-30. PubMed ID: 8049258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The GC-selective ligand mithramycin alters the structure of (AT)n sequences flanking its binding sites.
    Cons BM; Fox KR
    FEBS Lett; 1990 May; 264(1):100-4. PubMed ID: 2140099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide sequence cleavage of guanine-modified DNA with aflatoxin B1, dimethyl sulfate, and mitomycin C by bleomycin and deoxyribonuclease I.
    Suzuki T; Kuwahara J; Sugiura Y
    Biochem Biophys Res Commun; 1983 Dec; 117(3):916-22. PubMed ID: 6199025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of sequence-specific DNA binding ligands that use a two-stranded peptide motif for DNA sequence recognition.
    Nikolaev VA; Grokhovsky SL; Surovaya AN; Leinsoo TA; Sidorova NYu ; Zasedatelev AS; Zhuze AL; Strahan GA; Shafer RH; Gursky GV
    J Biomol Struct Dyn; 1996 Aug; 14(1):31-47. PubMed ID: 8877560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of GC and AT specific DNA minor groove binding drugs on intermolecular triplex formation in the human c-Ki-ras promoter.
    Vigneswaran N; Mayfield CA; Rodu B; James R; Kim HG; Miller DM
    Biochemistry; 1996 Jan; 35(4):1106-14. PubMed ID: 8573565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reverse banding on chromosomes produced by a guanosine-cytosine specific DNA binding antibiotic: olivomycin.
    van de Sande JH; Lin CC; Jorgenson KF
    Science; 1977 Jan; 195(4276):400-2. PubMed ID: 63994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-selective intercalation of antitumour bis-naphthalimides into DNA. Evidence for an approach via the major groove.
    Bailly C; Braña M; Waring MJ
    Eur J Biochem; 1996 Aug; 240(1):195-208. PubMed ID: 8797854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleotide sequence binding preferences of nogalamycin investigated by DNase I footprinting.
    Fox KR; Waring MJ
    Biochemistry; 1986 Jul; 25(15):4349-56. PubMed ID: 3019386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs.
    Gambari R; Feriotto G; Rutigliano C; Bianchi N; Mischiati C
    J Pharmacol Exp Ther; 2000 Jul; 294(1):370-7. PubMed ID: 10871335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential interactions of the Mg2+ complexes of chromomycin A3 and mithramycin with poly(dG-dC) x poly(dC-dG) and poly(dG) x poly(dC).
    Majee S; Sen R; Guha S; Bhattacharyya D; Dasgupta D
    Biochemistry; 1997 Feb; 36(8):2291-9. PubMed ID: 9047331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons.
    Chatterjee S; Zaman K; Ryu H; Conforto A; Ratan RR
    Ann Neurol; 2001 Mar; 49(3):345-54. PubMed ID: 11261509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonintercalative DNA-binding antitumour compounds.
    Baguley BC
    Mol Cell Biochem; 1982 Apr; 43(3):167-81. PubMed ID: 6283334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of mithramycin with DNA fragments complexed with nucleosome core particles: comparison with distamycin and echinomycin.
    Fox KR; Cons BM
    Biochemistry; 1993 Jul; 32(28):7162-71. PubMed ID: 8393707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mithramycin blocks protein binding and function of the SV40 early promoter.
    Ray R; Snyder RC; Thomas S; Koller CA; Miller DM
    J Clin Invest; 1989 Jun; 83(6):2003-7. PubMed ID: 2542379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biostructural chemistry of magnesium. regulation of mithramycin-DNA interactions by Mg2+ coordination.
    Huang HW; Li D; Cowan JA
    Biochimie; 1995; 77(9):729-38. PubMed ID: 8789464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intra- and intermolecular triplex DNA formation in the murine c-myb proto-oncogene promoter are inhibited by mithramycin.
    Vigneswaran N; Thayaparan J; Knops J; Trent J; Potaman V; Miller DM; Zacharias W
    Biol Chem; 2001 Feb; 382(2):329-42. PubMed ID: 11308031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.