These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29346872)

  • 21. Intraalveolar bubbles and bubble films: II. Formation in vivo through adulthood.
    Scarpelli EM; Mautone AJ; DeFouw DO; Clutario BC
    Anat Rec; 1996 Oct; 246(2):245-70. PubMed ID: 8888967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced drainage and coarsening in aqueous foams.
    Vera MU; Durian DJ
    Phys Rev Lett; 2002 Feb; 88(8):088304. PubMed ID: 11863979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gas and liquid transport in steady-state aqueous foam.
    Feitosa K; Durian DJ
    Eur Phys J E Soft Matter; 2008 Jul; 26(3):309-16. PubMed ID: 18516492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
    Yu W; Zhou X; Kanj MY
    Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.
    Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ
    Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ripening of a draining foam bubble.
    Louvet N; Rouyer F; Pitois O
    J Colloid Interface Sci; 2009 Jun; 334(1):82-6. PubMed ID: 19380148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening.
    Maestro A; Rio E; Drenckhan W; Langevin D; Salonen A
    Soft Matter; 2014 Sep; 10(36):6975-83. PubMed ID: 24832218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity.
    Le Merrer M; Cohen-Addad S; Höhler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022303. PubMed ID: 24032829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exterior foam drainage and flow regime switch in the foams.
    Anazadehsayed A; Rezaee N; Naser J
    J Colloid Interface Sci; 2018 Feb; 511():440-446. PubMed ID: 29035807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coarsening of a two-dimensional foam on a dome.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021402. PubMed ID: 23005758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stray-field NMR diffusion q-space diffraction imaging of monodisperse coarsening foams.
    Smith K; Burbidge A; Apperley D; Hodgkinson P; Markwell FA; Topgaard D; Hughes E
    J Colloid Interface Sci; 2016 Aug; 476():20-28. PubMed ID: 27179175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusive transport of light in three-dimensional disordered Voronoi structures.
    Sadjadi Z; Miri M; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051109. PubMed ID: 18643028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems.
    Svagan AJ; Benjamins JW; Al-Ansari Z; Shalom DB; Müllertz A; Wågberg L; Löbmann K
    J Control Release; 2016 Dec; 244(Pt A):74-82. PubMed ID: 27847327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coalescence In Draining Foams Made of Very Small Bubbles.
    Briceño-Ahumada Z; Drenckhan W; Langevin D
    Phys Rev Lett; 2016 Mar; 116(12):128302. PubMed ID: 27058106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linear and non-linear wall friction of wet foams.
    Le Merrer M; Lespiat R; Höhler R; Cohen-Addad S
    Soft Matter; 2015 Jan; 11(2):368-81. PubMed ID: 25387164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarsening transitions of wet liquid foams under microgravity conditions.
    Pasquet M; Galvani N; Requier A; Cohen-Addad S; Höhler R; Pitois O; Rio E; Salonen A; Langevin D
    Soft Matter; 2023 Aug; 19(33):6267-6279. PubMed ID: 37551883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new model to describe small-angle neutron scattering from foams.
    Kühnhammer M; Braun L; Ludwig M; Soltwedel O; Chiappisi L; von Klitzing R
    J Appl Crystallogr; 2022 Aug; 55(Pt 4):758-768. PubMed ID: 35974727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.
    Katgert G; Latka A; Möbius ME; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066318. PubMed ID: 19658605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions.
    Tcholakova S; Denkov ND; Golemanov K; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011405. PubMed ID: 18763954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.