These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29347059)

  • 21. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations.
    Hagsäter SM; Jensen TG; Bruus H; Kutter JP
    Lab Chip; 2007 Oct; 7(10):1336-44. PubMed ID: 17896019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theory and simulation of electroosmotic suppression of acoustic streaming.
    Winckelmann BG; Bruus H
    J Acoust Soc Am; 2021 Jun; 149(6):3917. PubMed ID: 34241445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical Simulation of Boundary-Driven Acoustic Streaming in Microfluidic Channels with Circular Cross-Sections.
    Lei J; Cheng F; Li K
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.
    Hasan N; Farouk B
    J Acoust Soc Am; 2015 Oct; 138(4):2414-25. PubMed ID: 26520322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of surface waves on the secondary Bjerknes force experienced by bubbles in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Aug; 94(2-1):023105. PubMed ID: 27627390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.
    Wada Y; Koyama D; Nakamura K
    Ultrasonics; 2014 Dec; 54(8):2119-25. PubMed ID: 25001051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides.
    Collins DJ; O'Rorke R; Devendran C; Ma Z; Han J; Neild A; Ai Y
    Phys Rev Lett; 2018 Feb; 120(7):074502. PubMed ID: 29542954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redshift of acoustic waves in acoustic streaming.
    Sato M; Matsuo T; Fujii T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016301. PubMed ID: 12935240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels.
    Muller PB; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043016. PubMed ID: 25375602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2017 Jun; 141(6):4418. PubMed ID: 28618831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability of acoustic streaming flows in plane channels.
    Chu AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046305. PubMed ID: 14683042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.
    Daru V; Reyt I; Bailliet H; Weisman C; Baltean-Carlès D
    J Acoust Soc Am; 2017 Jan; 141(1):563. PubMed ID: 28147596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustofluidics 16: acoustics streaming near liquid-gas interfaces: drops and bubbles.
    Sadhal SS
    Lab Chip; 2012 Aug; 12(16):2771-81. PubMed ID: 22776990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.