These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 29347075)
1. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy. Ankiewicz A; Akhmediev N Phys Rev E; 2017 Jul; 96(1-1):012219. PubMed ID: 29347075 [TBL] [Abstract][Full Text] [Related]
2. Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Ankiewicz A; Kedziora DJ; Chowdury A; Bandelow U; Akhmediev N Phys Rev E; 2016 Jan; 93(1):012206. PubMed ID: 26871072 [TBL] [Abstract][Full Text] [Related]
3. Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Chowdury A; Kedziora DJ; Ankiewicz A; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022919. PubMed ID: 25768581 [TBL] [Abstract][Full Text] [Related]
4. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297 [TBL] [Abstract][Full Text] [Related]
5. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions. Yang B; Chen Y Chaos; 2018 May; 28(5):053104. PubMed ID: 29857682 [TBL] [Abstract][Full Text] [Related]
6. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Wen XY; Yang Y; Yan Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257 [TBL] [Abstract][Full Text] [Related]
7. Soliton, rational, and periodic solutions for the infinite hierarchy of defocusing nonlinear Schrödinger equations. Ankiewicz A Phys Rev E; 2016 Jul; 94(1-1):012205. PubMed ID: 27575121 [TBL] [Abstract][Full Text] [Related]
8. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Ankiewicz A; Akhmediev N; Soto-Crespo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932 [TBL] [Abstract][Full Text] [Related]
9. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Yang Y; Yan Z; Malomed BA Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078 [TBL] [Abstract][Full Text] [Related]
10. Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions. Kedziora DJ; Ankiewicz A; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013207. PubMed ID: 23944576 [TBL] [Abstract][Full Text] [Related]
11. Rogue periodic waves of the focusing nonlinear Schrödinger equation. Chen J; Pelinovsky DE Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521 [No Abstract] [Full Text] [Related]
12. Influence of optical activity on rogue waves propagating in chiral optical fibers. Temgoua DD; Kofane TC Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269 [TBL] [Abstract][Full Text] [Related]
13. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background. Zhang HQ; Chen F Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045 [TBL] [Abstract][Full Text] [Related]
14. Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Chabchoub A; Hoffmann N; Onorato M; Slunyaev A; Sergeeva A; Pelinovsky E; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056601. PubMed ID: 23214897 [TBL] [Abstract][Full Text] [Related]
15. Non-autonomous multi-rogue waves for spin-1 coupled nonlinear Gross-Pitaevskii equation and management by external potentials. Li L; Yu F Sci Rep; 2017 Sep; 7(1):10638. PubMed ID: 28878276 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional rogue waves in nonstationary parabolic potentials. Yan Z; Konotop VV; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036610. PubMed ID: 21230206 [TBL] [Abstract][Full Text] [Related]
17. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Akhmediev N; Ankiewicz A; Soto-Crespo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026601. PubMed ID: 19792266 [TBL] [Abstract][Full Text] [Related]
18. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane. Liu TY; Chiu TL; Clarkson PA; Chow KW Chaos; 2017 Sep; 27(9):091103. PubMed ID: 28964137 [TBL] [Abstract][Full Text] [Related]
19. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Chowdury A; Kedziora DJ; Ankiewicz A; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032922. PubMed ID: 25314519 [TBL] [Abstract][Full Text] [Related]
20. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. He J; Wang L; Li L; Porsezian K; Erdélyi R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]