These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29347142)

  • 1. Fisher waves: An individual-based stochastic model.
    Houchmandzadeh B; Vallade M
    Phys Rev E; 2017 Jul; 96(1-1):012414. PubMed ID: 29347142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid method for simulating front propagation in reaction-diffusion systems.
    Moro E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):060101. PubMed ID: 15244531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of pulled fronts in fermionic microscopic particle models.
    Moro E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):025102. PubMed ID: 14525034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-size effects on bacterial population expansion under controlled flow conditions.
    Tesser F; Zeegers JC; Clercx HJ; Brunsveld L; Toschi F
    Sci Rep; 2017 Mar; 7():43903. PubMed ID: 28262769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragility of reaction-diffusion models with respect to competing advective processes.
    Kogan O; O'Keeffe K; Myers CR
    Phys Rev E; 2017 Aug; 96(2-1):022220. PubMed ID: 28950563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts.
    Brunet E; Derrida B; Mueller AH; Munier S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056126. PubMed ID: 16803017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Front propagation and clustering in the stochastic nonlocal Fisher equation.
    Ganan YA; Kessler DA
    Phys Rev E; 2018 Apr; 97(4-1):042213. PubMed ID: 29758694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive two-regime method: application to front propagation.
    Robinson M; Flegg M; Erban R
    J Chem Phys; 2014 Mar; 140(12):124109. PubMed ID: 24697426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Front propagation in a spatial system of weakly interacting networks.
    Khain E; Iyengar M
    Phys Rev E; 2023 Mar; 107(3-1):034309. PubMed ID: 37072989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Master equation for a chemical wave front with perturbation of local equilibrium.
    Dziekan P; Lemarchand A; Nowakowski B
    J Chem Phys; 2011 Aug; 135(8):084123. PubMed ID: 21895175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fisher-Kolmogorov-Petrovsky-Piskunov dynamics mediated by a parent field with a delay.
    Stanley S; Kogan O
    Phys Rev E; 2021 Sep; 104(3-1):034415. PubMed ID: 34654205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front propagation in cellular flows for fast reaction and small diffusivity.
    Tzella A; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):011001. PubMed ID: 25122240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent-state path integral versus coarse-grained effective stochastic equation of motion: From reaction diffusion to stochastic sandpiles.
    Wiese KJ
    Phys Rev E; 2016 Apr; 93():042117. PubMed ID: 27176264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion.
    Curtis CW; Bortz DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066108. PubMed ID: 23368005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stationary solutions for metapopulation Moran models with mutation and selection.
    Constable GW; McKane AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032711. PubMed ID: 25871148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic demixing and evolution in linear stepping stone models.
    Korolev KS; Avlund M; Hallatschek O; Nelson DR
    Rev Mod Phys; 2010 Jun; 82(2):1691-1718. PubMed ID: 21072144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle-number distribution in large fluctuations at the tip of branching random walks.
    Mueller AH; Munier S
    Phys Rev E; 2020 Aug; 102(2-1):022104. PubMed ID: 32942493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric scaling as traveling waves.
    Munier S; Peschanski R
    Phys Rev Lett; 2003 Dec; 91(23):232001. PubMed ID: 14683173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-displacement statistics of the rightmost particle of the one-dimensional branching Brownian motion.
    Derrida B; Meerson B; Sasorov PV
    Phys Rev E; 2016 Apr; 93():042139. PubMed ID: 27176286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise driven evolutionary waves.
    Hallatschek O
    PLoS Comput Biol; 2011 Mar; 7(3):e1002005. PubMed ID: 21423714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.