These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 29347192)

  • 1. Endoreversible quantum heat engines in the linear response regime.
    Wang H; He J; Wang J
    Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.
    Haseli Y
    Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of Harmonic Quantum Otto Engines at Maximal Power.
    Deffner S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization, Stability, and Entropy in Endoreversible Heat Engines.
    Gonzalez-Ayala J; Mateos Roco JM; Medina A; Calvo Hernández A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations.
    Cerino L; Puglisi A; Vulpiani A
    Phys Rev E; 2016 Apr; 93():042116. PubMed ID: 27176263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle.
    Chen YH; Chen JF; Fei Z; Quan HT
    Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. True nature of the Curzon-Ahlborn efficiency.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E; 2017 Aug; 96(2-1):022119. PubMed ID: 28950453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines.
    Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G
    Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Performance Analysis of a Simplified Curzon-Ahlborn Engine.
    Páez-Hernández RT; Chimal-Eguía JC; Ladino-Luna D; Velázquez-Arcos JM
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency at maximum power of thermally coupled heat engines.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applicability of the low-dissipation model: Carnot-like heat engines under Newton's law of cooling.
    Zhang Y; Huang Y
    Phys Rev E; 2020 Jul; 102(1-1):012151. PubMed ID: 32794970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.