These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29347204)

  • 21. Squeezing wetting and nonwetting liquids.
    Samoilov VN; Persson BN
    J Chem Phys; 2004 Jan; 120(4):1997-2004. PubMed ID: 15268334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves.
    Khare K; Zhou J; Yang S
    Langmuir; 2009 Nov; 25(21):12794-9. PubMed ID: 19572521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous rise in open rectangular channels under gravity.
    Thammanna Gurumurthy V; Roisman IV; Tropea C; Garoff S
    J Colloid Interface Sci; 2018 Oct; 527():151-158. PubMed ID: 29793169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.
    Dhar J; Ghosh U; Chakraborty S
    Soft Matter; 2015 Sep; 11(35):6957-67. PubMed ID: 26235842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wetting Driven by Thermal Fluctuations on Terraced Nanostructures.
    Colosqui CE; Teng T; Rahmani AM
    Phys Rev Lett; 2015 Oct; 115(15):154504. PubMed ID: 26550728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force.
    Han A; Mondin G; Hegelbach NG; de Rooij NF; Staufer U
    J Colloid Interface Sci; 2006 Jan; 293(1):151-7. PubMed ID: 16023663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics and stability of two-potential flows in the porous media.
    Markicevic B; Bijeljic B; Navaz HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast Responsive and Controllable Liquid Transport on a Magnetic Fluid/Nanoarray Composite Interface.
    Tian D; Zhang N; Zheng X; Hou G; Tian Y; Du Y; Jiang L; Dou SX
    ACS Nano; 2016 Jun; 10(6):6220-6. PubMed ID: 27199104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of intermediate wettability on entry capillary pressure in angular pores.
    Rabbani HS; Joekar-Niasar V; Shokri N
    J Colloid Interface Sci; 2016 Jul; 473():34-43. PubMed ID: 27042823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.
    Anoop R; Sen AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013024. PubMed ID: 26274286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capillary-Driven Rise of Well-Wetting Liquid on the Outer Surface of Cylindrical Nozzles.
    Sedighi E; Zeng Z; Sadeghpour A; Ji H; Ju YS; Bertozzi AL
    Langmuir; 2021 Sep; 37(35):10413-10423. PubMed ID: 34428061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids.
    Hore MJ; Laradji M
    J Chem Phys; 2010 Jan; 132(2):024908. PubMed ID: 20095710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces.
    Ledesma-Aguilar R; Hernández-Machado A; Pagonabarraga I
    Phys Rev Lett; 2013 Jun; 110(26):264502. PubMed ID: 23848879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid flow and control without solid walls.
    Dunne P; Adachi T; Dev AA; Sorrenti A; Giacchetti L; Bonnin A; Bourdon C; Mangin PH; Coey JMD; Doudin B; Hermans TM
    Nature; 2020 May; 581(7806):58-62. PubMed ID: 32376963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An investigation on the capillary wetting of glass fiber tow and fabric structures with nanoclay-enriched reactive epoxy and silicone oil mixtures.
    Ertekin A; Jana SC; Thomas RR
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1662-71. PubMed ID: 20355781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements.
    Pal D; Chakraborty S
    Electrophoresis; 2011 Feb; 32(5):638-45. PubMed ID: 21294133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillary climb dynamics in the limits of prevailing capillary and gravity force.
    Bijeljic B; Markicevic B; Navaz HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056310. PubMed ID: 21728650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.