These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 29347243)

  • 1. Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected.
    Cobos-Campos F; Wouchuk JG
    Phys Rev E; 2017 Jul; 96(1-1):013102. PubMed ID: 29347243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected.
    Campos FC; Wouchuk JG
    Phys Rev E; 2016 May; 93(5):053111. PubMed ID: 27300982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a rarefaction is reflected.
    Wouchuk JG; Sano T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023005. PubMed ID: 25768595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical asymptotic velocities in linear Richtmyer-Meshkov-like flows.
    Cobos Campos F; Wouchuk JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053007. PubMed ID: 25493881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected.
    Wouchuk JG; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026305. PubMed ID: 15447586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution.
    Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected.
    Wouchuk JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056303. PubMed ID: 11415002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K; Fukuda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids.
    Rollin B; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reynolds number effects on the single-mode Richtmyer-Meshkov instability.
    Walchli B; Thornber B
    Phys Rev E; 2017 Jan; 95(1-1):013104. PubMed ID: 28208335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field.
    Wouchuk JG; Huete Ruiz de Lira C; Velikovich AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066315. PubMed ID: 19658602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Mikaelian KO
    Phys Rev E; 2019 Feb; 99(2-1):023112. PubMed ID: 30934361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observations of three-dimensional Richtmyer-Meshkov instability on a membraneless gas bubble.
    Chu HY; Chen DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):051002. PubMed ID: 23767479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Theory for the Growth Rate and Amplitude of the Compressible Richtmyer-Meshkov Instability at all Density Ratios.
    Zhang Q; Deng S; Guo W
    Phys Rev Lett; 2018 Oct; 121(17):174502. PubMed ID: 30411914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instability of a planar expansion wave.
    Velikovich AL; Zalesak ST; Metzler N; Wouchuk JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046306. PubMed ID: 16383532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of initial condition spectral content on shock-driven turbulent mixing.
    Nelson NJ; Grinstein FF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013014. PubMed ID: 26274276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.