These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29347255)

  • 1. From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators.
    Lauter R; Mitra A; Marquardt F
    Phys Rev E; 2017 Jul; 96(1-1):012220. PubMed ID: 29347255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet.
    Ljubotina M; Žnidarič M; Prosen T
    Phys Rev Lett; 2019 May; 122(21):210602. PubMed ID: 31283341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergent Kardar-Parisi-Zhang Phase in Quadratically Driven Condensates.
    Diessel OK; Diehl S; Chiocchetta A
    Phys Rev Lett; 2022 Feb; 128(7):070401. PubMed ID: 35244410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.
    Nicoli M; Vivo E; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):045202. PubMed ID: 21230337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface pattern formation and scaling described by conserved lattice gases.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051114. PubMed ID: 20866192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions.
    Roy D; Pandit R
    Phys Rev E; 2020 Mar; 101(3-1):030103. PubMed ID: 32289936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Fluctuating Hydrodynamics for Kardar-Parisi-Zhang Scaling in Isotropic Spin Chains.
    De Nardis J; Gopalakrishnan S; Vasseur R
    Phys Rev Lett; 2023 Nov; 131(19):197102. PubMed ID: 38000404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of (2+1) -dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021125. PubMed ID: 19391724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical properties of the synchronization transition in space-time chaos.
    Ahlers V; Pikovsky A
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):254101. PubMed ID: 12097087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kardar-Parisi-Zhang modes in d-dimensional directed polymers.
    Schütz GM; Wehefritz-Kaufmann B
    Phys Rev E; 2017 Sep; 96(3-1):032119. PubMed ID: 29346934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections.
    Oliveira TJ; Alves SG; Ferreira SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):040102. PubMed ID: 23679356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal Kardar-Parisi-Zhang transient diffusion in nonequilibrium anharmonic chains.
    Ming Y; Hu H; Li HM; Ding ZJ; Ren J
    Phys Rev E; 2023 Jan; 107(1-1):014204. PubMed ID: 36797957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sinc noise for the Kardar-Parisi-Zhang equation.
    Niggemann O; Hinrichsen H
    Phys Rev E; 2018 Jun; 97(6-1):062125. PubMed ID: 30011492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Out-of-time-ordered correlator in the one-dimensional Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations.
    Roy D; Huse DA; Kulkarni M
    Phys Rev E; 2023 Nov; 108(5-1):054112. PubMed ID: 38115452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Master equation approach to synchronization in diffusion-coupled nonlinear oscillators.
    Vance W; Ross J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3303-10. PubMed ID: 11088829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces.
    Iwatsuka T; Fukai YT; Takeuchi KA
    Phys Rev Lett; 2020 Jun; 124(25):250602. PubMed ID: 32639767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate.
    Fontaine Q; Squizzato D; Baboux F; Amelio I; Lemaître A; Morassi M; Sagnes I; Le Gratiet L; Harouri A; Wouters M; Carusotto I; Amo A; Richard M; Minguzzi A; Canet L; Ravets S; Bloch J
    Nature; 2022 Aug; 608(7924):687-691. PubMed ID: 36002483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation.
    Le Doussal P; Thiery T
    Phys Rev E; 2017 Jul; 96(1-1):010102. PubMed ID: 29347226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlocal Kardar-Parisi-Zhang equation to model interface growth.
    Kechagia P; Yortsos YC; Lichtner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016315. PubMed ID: 11461399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.