These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 29347292)
1. Boundary conditions for a one-sided numerical model of evaporative instabilities in sessile drops of ethanol on heated substrates. Semenov S; Carle F; Medale M; Brutin D Phys Rev E; 2017 Dec; 96(6-1):063113. PubMed ID: 29347292 [TBL] [Abstract][Full Text] [Related]
2. Microdroplet evaporation with a forced pinned contact line. Gleason K; Putnam SA Langmuir; 2014 Sep; 30(34):10548-55. PubMed ID: 25102248 [TBL] [Abstract][Full Text] [Related]
10. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect. Wang Y; Ma L; Xu X; Luo J J Colloid Interface Sci; 2016 Dec; 484():291-297. PubMed ID: 27632074 [TBL] [Abstract][Full Text] [Related]
11. Evaporation-induced flows inside a confined droplet of diluted saline solution. Lee SJ; Hong J; Choi YS Langmuir; 2014 Jul; 30(26):7710-5. PubMed ID: 24932677 [TBL] [Abstract][Full Text] [Related]
12. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets. Wang Y; Ma L; Xu X; Luo J Soft Matter; 2015 Jul; 11(28):5632-40. PubMed ID: 26059590 [TBL] [Abstract][Full Text] [Related]
13. On the effect of marangoni flow on evaporation rates of heated water drops. Girard F; Antoni M; Sefiane K Langmuir; 2008 Sep; 24(17):9207-10. PubMed ID: 18671417 [TBL] [Abstract][Full Text] [Related]
14. Influence of surface wettability on transport mechanisms governing water droplet evaporation. Pan Z; Weibel JA; Garimella SV Langmuir; 2014 Aug; 30(32):9726-30. PubMed ID: 25105726 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the confinement effect on the evaporation behavior of a droplet pinned on a micropillar structure. Li J; Shan L; Ma B; Jiang X; Solomon A; Iyengar M; Padilla J; Agonafer D J Colloid Interface Sci; 2019 Nov; 555():583-594. PubMed ID: 31404842 [TBL] [Abstract][Full Text] [Related]
16. Vapor distribution changes evaporative flux profiles of a sessile droplet. Kuk M; Pyeon J; Kim H J Colloid Interface Sci; 2023 Dec; 652(Pt A):646-652. PubMed ID: 37611470 [TBL] [Abstract][Full Text] [Related]
17. Experimental investigation of interfacial energy transport in an evaporating sessile droplet for evaporative cooling applications. Mahmud MA; MacDonald BD Phys Rev E; 2017 Jan; 95(1-1):012609. PubMed ID: 28208416 [TBL] [Abstract][Full Text] [Related]
18. Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops. Chini SF; Amirfazli A Adv Colloid Interface Sci; 2017 May; 243():121-128. PubMed ID: 28153334 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Evaporation of Droplet Pairs by a Quasi-Steady-State Diffusion Model Coupled with the Evaporative Cooling Effect. Yamada Y; Isobe K; Horibe A Langmuir; 2023 Nov; 39(44):15587-15596. PubMed ID: 37867300 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach. Xu X; Ma L Sci Rep; 2015 Feb; 5():8614. PubMed ID: 25721987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]