These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Feldmann T; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016101. PubMed ID: 12935194 [TBL] [Abstract][Full Text] [Related]
5. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Türkpençe D; Müstecaplıoğlu ÖE Phys Rev E; 2016 Jan; 93(1):012145. PubMed ID: 26871061 [TBL] [Abstract][Full Text] [Related]
6. Quantum Photovoltaic Cells Driven by Photon Pulses. Oh S; Park JJ; Nha H Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286465 [TBL] [Abstract][Full Text] [Related]
7. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. Kato A; Tanimura Y J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915 [TBL] [Abstract][Full Text] [Related]
8. Quantum heat engine power can be increased by noise-induced coherence. Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187 [TBL] [Abstract][Full Text] [Related]
9. Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators. Eichler C; Petta JR Phys Rev Lett; 2018 Jun; 120(22):227702. PubMed ID: 29906158 [TBL] [Abstract][Full Text] [Related]
10. Power and efficiency of a thermal engine with a coherent bath. Guff T; Daryanoosh S; Baragiola BQ; Gilchrist A Phys Rev E; 2019 Sep; 100(3-1):032129. PubMed ID: 31639983 [TBL] [Abstract][Full Text] [Related]
11. Superadiabatic quantum heat engine with a multiferroic working medium. Chotorlishvili L; Azimi M; Stagraczyński S; Toklikishvili Z; Schüler M; Berakdar J Phys Rev E; 2016 Sep; 94(3-1):032116. PubMed ID: 27739759 [TBL] [Abstract][Full Text] [Related]
12. Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics. Han X; Zou CL; Tang HX Phys Rev Lett; 2016 Sep; 117(12):123603. PubMed ID: 27689272 [TBL] [Abstract][Full Text] [Related]
13. Superconducting-like Heat Current: Effective Cancellation of Current-Dissipation Trade-Off by Quantum Coherence. Tajima H; Funo K Phys Rev Lett; 2021 Nov; 127(19):190604. PubMed ID: 34797134 [TBL] [Abstract][Full Text] [Related]
14. Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. Katz I; Retzker A; Straub R; Lifshitz R Phys Rev Lett; 2007 Jul; 99(4):040404. PubMed ID: 17678342 [TBL] [Abstract][Full Text] [Related]
15. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid". Gelbwaser-Klimovsky D; Niedenzu W; Brumer P; Kurizki G Sci Rep; 2015 Sep; 5():14413. PubMed ID: 26394838 [TBL] [Abstract][Full Text] [Related]
16. Coupling carbon nanotube mechanics to a superconducting circuit. Schneider BH; Etaki S; van der Zant HS; Steele GA Sci Rep; 2012; 2():599. PubMed ID: 22953042 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators. Insinga A; Andresen B; Salamon P Phys Rev E; 2016 Jul; 94(1-1):012119. PubMed ID: 27575089 [TBL] [Abstract][Full Text] [Related]
18. Quantum Characteristics of a Nanomechanical Resonator Coupled to a Superconducting LC Resonator in Quantum Computing Systems. Choi JR; Ju S Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586906 [TBL] [Abstract][Full Text] [Related]
19. Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED. Nataf P; Ciuti C Phys Rev Lett; 2011 Nov; 107(19):190402. PubMed ID: 22181586 [TBL] [Abstract][Full Text] [Related]
20. Probing tiny motions of nanomechanical resonators: classical or quantum mechanical? Wei LF; Liu YX; Sun CP; Nori F Phys Rev Lett; 2006 Dec; 97(23):237201. PubMed ID: 17280237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]