These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29347356)

  • 1. First- and second-order quantum phase transitions of a q-state Potts model in fractal lattices.
    Yi H
    Phys Rev E; 2017 Dec; 96(6-1):062105. PubMed ID: 29347356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the dynamic and static critical exponents of the two-dimensional three-state Potts model using linearly varying temperature.
    Fan S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041141. PubMed ID: 17994970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Potts models with real q and no critical slowing down.
    Gliozzi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016115. PubMed ID: 12241434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disorder-induced rounding of the phase transition in the large-q-state Potts model.
    Mercaldo MT; Anglès D'Auriac JC; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056112. PubMed ID: 15244888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.
    Dai YW; Cho SY; Batchelor MT; Zhou HQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062142. PubMed ID: 25019759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yang-Lee zeros of the Q-state Potts model on recursive lattices.
    Ghulghazaryan RG; Ananikian NS; Sloot PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046110. PubMed ID: 12443262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalent-neighbor Potts models in two dimensions.
    Qian X; Deng Y; Liu Y; Guo W; Blöte HW
    Phys Rev E; 2016 Nov; 94(5-1):052103. PubMed ID: 27967043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semianalytical solutions of Ising-like and Potts-like magnetic polymers on the Bethe lattice.
    Rodrigues NT; Oliveira TJ
    Phys Rev E; 2022 Aug; 106(2-1):024130. PubMed ID: 36109992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q.
    Kim SY; Creswick RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066107. PubMed ID: 11415173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Order-disorder transition in a two-dimensional associating lattice gas.
    Furlan AP; Oliveira TJ; Stilck JF; Dickman R
    Phys Rev E; 2019 Aug; 100(2-1):022109. PubMed ID: 31574678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transition and surface sublimation of a mobile Potts model.
    Bailly-Reyre A; Diep HT; Kaufman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042160. PubMed ID: 26565221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic behavior of the Ziff-Gulari-Barshad model on fractal lattices: the influence of the order of ramification.
    Gao Z; Yang ZR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2741-4. PubMed ID: 11970078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-size analysis of a two-dimensional Ising model within a nonextensive approach.
    Crokidakis N; Soares-Pinto DO; Reis MS; Souza AM; Sarthour RS; Oliveira IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051101. PubMed ID: 20364941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum fidelity for degenerate ground states in quantum phase transitions.
    Su YH; Hu BQ; Li SH; Cho SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032110. PubMed ID: 24125217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium scaling explorations on a two-dimensional Z(5)-symmetric model.
    da Silva R; Fernandes HA; Drugowich de Felício JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042101. PubMed ID: 25375432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-size scaling at the first-order quantum transitions of quantum Potts chains.
    Campostrini M; Nespolo J; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052103. PubMed ID: 26066115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium critical relaxation of the order parameter and energy in the two-dimensional ferromagnetic Potts model.
    Nam K; Kim B; Lee SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056104. PubMed ID: 18643133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical behavior of the spin-1 Blume-Capel model on two-dimensional Voronoi-Delaunay random lattices.
    Fernandes FP; de Albuquerque DF; Lima FW; Plascak JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022144. PubMed ID: 26382380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.