These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 29347358)
1. Divergence of activity expansions: Is it actually a problem? Ushcats MV; Bulavin LA; Sysoev VM; Ushcats SY Phys Rev E; 2017 Dec; 96(6-1):062115. PubMed ID: 29347358 [TBL] [Abstract][Full Text] [Related]
2. Adequacy of the virial equation of state and cluster expansion. Ushcats MV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042111. PubMed ID: 23679377 [TBL] [Abstract][Full Text] [Related]
3. Condensation of the Lennard-Jones fluid on the basis of the Gibbs single-phase approach. Ushcats MV J Chem Phys; 2013 Mar; 138(9):094309. PubMed ID: 23485296 [TBL] [Abstract][Full Text] [Related]
5. Communication: Low-temperature approximation of the virial series for the Lennard-Jones and modified Lennard-Jones models. Ushcats MV J Chem Phys; 2014 Sep; 141(10):101103. PubMed ID: 25217895 [TBL] [Abstract][Full Text] [Related]
6. Construction of subcritical isotherms for model and real gases on the basis of Mayer's cluster expansion. Ushcats MV; Bulavin LA Phys Rev E; 2020 Jun; 101(6-1):062128. PubMed ID: 32688551 [TBL] [Abstract][Full Text] [Related]
7. Some universality in subcritical behavior of real substances and model fluids. Ushcats MV; Bulavin LA; Ushcats SY; Markina LM Phys Rev E; 2020 Oct; 102(4-1):042130. PubMed ID: 33212579 [TBL] [Abstract][Full Text] [Related]
8. Molecular based modeling of associating fluids via calculation of Wertheim cluster integrals. Kim HM; Schultz AJ; Kofke DA J Phys Chem B; 2010 Sep; 114(35):11515-24. PubMed ID: 20704286 [TBL] [Abstract][Full Text] [Related]
9. Combined temperature and density series for fluid-phase properties. II. Lennard-Jones spheres. Elliott JR; Schultz AJ; Kofke DA J Chem Phys; 2019 Nov; 151(20):204501. PubMed ID: 31779334 [TBL] [Abstract][Full Text] [Related]
10. Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls. Urrutia I; Paganini IE J Chem Phys; 2016 May; 144(17):174102. PubMed ID: 27155620 [TBL] [Abstract][Full Text] [Related]
11. Melting line of the Lennard-Jones system, infinite size, and full potential. Mastny EA; de Pablo JJ J Chem Phys; 2007 Sep; 127(10):104504. PubMed ID: 17867758 [TBL] [Abstract][Full Text] [Related]
12. High-density equation of state for a lattice gas. Ushcats MV Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052144. PubMed ID: 26066156 [TBL] [Abstract][Full Text] [Related]
13. The evaporation/condensation transition of liquid droplets. MacDowell LG; Virnau P; Müller M; Binder K J Chem Phys; 2004 Mar; 120(11):5293-308. PubMed ID: 15267401 [TBL] [Abstract][Full Text] [Related]
14. Equation of state beyond the radius of convergence of the virial expansion. Ushcats MV Phys Rev Lett; 2012 Jul; 109(4):040601. PubMed ID: 23006071 [TBL] [Abstract][Full Text] [Related]
15. The second virial coefficient and critical point behavior of the Mie Potential. Heyes DM; Rickayzen G; Pieprzyk S; Brańka AC J Chem Phys; 2016 Aug; 145(8):084505. PubMed ID: 27586933 [TBL] [Abstract][Full Text] [Related]
16. Precise simulation of the freezing transition of supercritical Lennard-Jones. Nayhouse M; Amlani AM; Orkoulas G J Chem Phys; 2011 Oct; 135(15):154103. PubMed ID: 22029293 [TBL] [Abstract][Full Text] [Related]
17. Higher-order virial coefficients of water models. Benjamin KM; Singh JK; Schultz AJ; Kofke DA J Phys Chem B; 2007 Oct; 111(39):11463-73. PubMed ID: 17850128 [TBL] [Abstract][Full Text] [Related]
18. A critical evaluation of perturbation theories by Monte Carlo simulation of the first four perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid. van Westen T; Gross J J Chem Phys; 2017 Jul; 147(1):014503. PubMed ID: 28688382 [TBL] [Abstract][Full Text] [Related]
19. Inverse power potentials: virial coefficients and a general equation of state. Wheatley RJ J Phys Chem B; 2005 Apr; 109(15):7463-7. PubMed ID: 16851856 [TBL] [Abstract][Full Text] [Related]
20. Chemical potentials and phase equilibria of Lennard-Jones mixtures: a self-consistent integral equation approach. Wilson DS; Lee LL J Chem Phys; 2005 Jul; 123(4):044512. PubMed ID: 16095374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]