These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29347410)

  • 1. Mode-coupling theory for active Brownian particles.
    Liluashvili A; Ónody J; Voigtmann T
    Phys Rev E; 2017 Dec; 96(6-1):062608. PubMed ID: 29347410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.
    Elizondo-Aguilera LF; Zubieta Rico PF; Ruiz-Estrada H; Alarcón-Waess O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052301. PubMed ID: 25493790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Brownian particles moving in a random Lorentz gas.
    Zeitz M; Wolff K; Stark H
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
    Weysser F; Puertas AM; Fuchs M; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic theory for nonequilibrium correlation functions in dense active fluids.
    Debets VE; Sarfati L; Voigtmann T; Janssen LMC
    Phys Rev E; 2024 May; 109(5-1):054605. PubMed ID: 38907395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active glassy dynamics is unaffected by the microscopic details of self-propulsion.
    Debets VE; Janssen LMC
    J Chem Phys; 2022 Dec; 157(22):224902. PubMed ID: 36546821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glassy dynamics of Brownian particles with velocity-dependent friction.
    Yazdi A; Sperl M
    Phys Rev E; 2016 Sep; 94(3-1):032602. PubMed ID: 27739784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.
    Frey S; Weysser F; Meyer H; Farago J; Fuchs M; Baschnagel J
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):97. PubMed ID: 25715952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crowding-Enhanced Diffusion: An Exact Theory for Highly Entangled Self-Propelled Stiff Filaments.
    Mandal S; Kurzthaler C; Franosch T; Löwen H
    Phys Rev Lett; 2020 Sep; 125(13):138002. PubMed ID: 33034497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tests of mode-coupling theory in two dimensions.
    Weysser F; Hajnal D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041503. PubMed ID: 21599165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tagged-particle dynamics in a hard-sphere system: mode-coupling theory analysis.
    Voigtmann T; Puertas AM; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061506. PubMed ID: 15697373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation dynamics in a binary hard-ellipse liquid.
    Xu WS; Sun ZY; An LJ
    Soft Matter; 2015 Jan; 11(3):627-34. PubMed ID: 25466776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nonequilibrium glassy dynamics of self-propelled particles.
    Flenner E; Szamel G; Berthier L
    Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.
    Nandi SK; Gov NS
    Soft Matter; 2017 Oct; 13(41):7609-7616. PubMed ID: 29028064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length scales and structural dynamics in nematogen pseudonematic domains measured with 2D IR vibrational echoes and optical Kerr effect experiments.
    Sokolowsky KP; Bailey HE; Fayer MD
    J Phys Chem B; 2014 Jul; 118(28):7856-68. PubMed ID: 24521155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of MIPS in a suspension of repulsive active Brownian particles through dynamical features.
    Martin-Roca J; Martinez R; Alexander LC; Diez AL; Aarts DGAL; Alarcon F; Ramírez J; Valeriani C
    J Chem Phys; 2021 Apr; 154(16):164901. PubMed ID: 33940816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.