These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29347419)

  • 1. Diverging, but negligible power at Carnot efficiency: Theory and experiment.
    Holubec V; Ryabov A
    Phys Rev E; 2017 Dec; 96(6-1):062107. PubMed ID: 29347419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Most efficient quantum thermoelectric at finite power output.
    Whitney RS
    Phys Rev Lett; 2014 Apr; 112(13):130601. PubMed ID: 24745399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compatibility of Carnot efficiency with finite power in an underdamped Brownian Carnot cycle in small temperature-difference regime.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2021 Apr; 103(4-1):042125. PubMed ID: 34006002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum power and the corresponding efficiency for a Carnot-like thermoelectric cycle based on fluctuation theorem.
    Hua Y; Guo ZY
    Phys Rev E; 2024 Feb; 109(2-1):024130. PubMed ID: 38491639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycling Tames Power Fluctuations near Optimum Efficiency.
    Holubec V; Ryabov A
    Phys Rev Lett; 2018 Sep; 121(12):120601. PubMed ID: 30296120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving Carnot efficiency in a finite-power Brownian Carnot cycle with arbitrary temperature difference.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2022 Mar; 105(3-1):034102. PubMed ID: 35428092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency at maximum power of thermally coupled heat engines.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power.
    Long R; Liu W
    Phys Rev E; 2016 Nov; 94(5-1):052114. PubMed ID: 27967103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.
    Guo J; Wang J; Wang Y; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast-forward approach to stochastic heat engine.
    Nakamura K; Matrasulov J; Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012129. PubMed ID: 32794934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry.
    Liu Q; Li W; Zhang M; He J; Wang J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropic bounds on currents in Langevin systems.
    Dechant A; Sasa SI
    Phys Rev E; 2018 Jun; 97(6-1):062101. PubMed ID: 30011501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dynamical framework for Brownian heat engines.
    Agarwal GS; Chaturvedi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.