These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29347488)

  • 1. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes.
    Sumi T; Okumoto A; Goto H; Sekino H
    Phys Rev E; 2017 Oct; 96(4-1):042410. PubMed ID: 29347488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques.
    Suzuki K; Ritchie K; Kajikawa E; Fujiwara T; Kusumi A
    Biophys J; 2005 May; 88(5):3659-80. PubMed ID: 15681644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulations of protein diffusion in compartmentalized cell membranes.
    Sung BJ; Yethiraj A
    Biophys J; 2009 Jul; 97(2):472-9. PubMed ID: 19619461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of anomalous diffusion on cell membranes: a Monte Carlo study.
    Nicolau DV; Hancock JF; Burrage K
    Biophys J; 2007 Mar; 92(6):1975-87. PubMed ID: 17189312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules.
    Kusumi A; Nakada C; Ritchie K; Murase K; Suzuki K; Murakoshi H; Kasai RS; Kondo J; Fujiwara T
    Annu Rev Biophys Biomol Struct; 2005; 34():351-78. PubMed ID: 15869394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic lattice Monte Carlo simulation of viscoelastic subdiffusion.
    Fritsch CC; Langowski J
    J Chem Phys; 2012 Aug; 137(6):064114. PubMed ID: 22897262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.
    Saxton MJ
    Biophys J; 2001 Oct; 81(4):2226-40. PubMed ID: 11566793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Simulation and FRAP Experiments Show That the Plasma Membrane Binding Protein PH-EFA6 Does Not Exhibit Anomalous Subdiffusion in Cells.
    Favard C
    Biomolecules; 2018 Sep; 8(3):. PubMed ID: 30189682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review).
    Ritchie K; Iino R; Fujiwara T; Murase K; Kusumi A
    Mol Membr Biol; 2003; 20(1):13-8. PubMed ID: 12745919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying anomalous diffusion in the plasma membrane.
    Krapf D
    Curr Top Membr; 2015; 75():167-207. PubMed ID: 26015283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picket-fences in the plasma membrane: functions in immune cells and phagocytosis.
    Mylvaganam SM; Grinstein S; Freeman SA
    Semin Immunopathol; 2018 Nov; 40(6):605-615. PubMed ID: 30209546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion of proteins in sheared lipid membranes.
    Khoshnood A; Jalali MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032705. PubMed ID: 24125292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches.
    Kiselev VY; Leda M; Lobanov AI; Marenduzzo D; Goryachev AB
    J Chem Phys; 2011 Oct; 135(15):155103. PubMed ID: 22029337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane.
    Golan Y; Sherman E
    Nat Commun; 2017 Jun; 8():15851. PubMed ID: 28631757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biological interpretation of transient anomalous subdiffusion. I. Qualitative model.
    Saxton MJ
    Biophys J; 2007 Feb; 92(4):1178-91. PubMed ID: 17142285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal analysis of lateral movement in biomembranes.
    Gmachowski L
    Eur Biophys J; 2018 Apr; 47(3):309-316. PubMed ID: 29094176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical analysis of particle trajectories in living cells.
    Briane V; Kervrann C; Vimond M
    Phys Rev E; 2018 Jun; 97(6-1):062121. PubMed ID: 30011544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles.
    Stefferson MW; Norris SL; Vernerey FJ; Betterton MD; Hough LE
    Phys Biol; 2017 Jun; 14(4):045008. PubMed ID: 28597848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.