These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 29347589)
1. Synchronization scenarios in the Winfree model of coupled oscillators. Gallego R; Montbrió E; Pazó D Phys Rev E; 2017 Oct; 96(4-1):042208. PubMed ID: 29347589 [TBL] [Abstract][Full Text] [Related]
2. The Winfree model with non-infinitesimal phase-response curve: Ott-Antonsen theory. Pazó D; Gallego R Chaos; 2020 Jul; 30(7):073139. PubMed ID: 32752623 [TBL] [Abstract][Full Text] [Related]
3. Collective phase response curves for heterogeneous coupled oscillators. Hannay KM; Booth V; Forger DB Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022923. PubMed ID: 26382491 [TBL] [Abstract][Full Text] [Related]
4. Role of phase-dependent influence function in the Winfree model of coupled oscillators. Manoranjani M; Gopal R; Senthilkumar DV; Chandrasekar VK Phys Rev E; 2021 Dec; 104(6-1):064206. PubMed ID: 35030866 [TBL] [Abstract][Full Text] [Related]
5. From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation. Kawamura Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010901. PubMed ID: 24580159 [TBL] [Abstract][Full Text] [Related]
6. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
7. Phase diagram for the Winfree model of coupled nonlinear oscillators. Ariaratnam JT; Strogatz SH Phys Rev Lett; 2001 May; 86(19):4278-81. PubMed ID: 11328154 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity. Banerjee A; Acharyya M Phys Rev E; 2016 Aug; 94(2-1):022213. PubMed ID: 27627304 [TBL] [Abstract][Full Text] [Related]
9. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions. Sharma A; Rajwani P; Jalan S Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of Structured Networks of Winfree Oscillators. Laing CR; Bläsche C; Means S Front Syst Neurosci; 2021; 15():631377. PubMed ID: 33643004 [TBL] [Abstract][Full Text] [Related]
11. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach. Pinto RS; Saa A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738 [TBL] [Abstract][Full Text] [Related]
12. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related]
13. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
14. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]