These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29347598)

  • 1. Electric generation and ratcheted transport of contact-charged drops.
    Cartier CA; Graybill JR; Bishop KJM
    Phys Rev E; 2017 Oct; 96(4-1):043101. PubMed ID: 29347598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of charged and uncharged drops in high alternating tangential electric fields.
    Löwe JM; Hinrichsen V; Roisman IV; Tropea C
    Phys Rev E; 2020 Feb; 101(2-1):023102. PubMed ID: 32168636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charged Satellite Drop Avoidance in Electrohydrodynamic Dripping.
    Guo L; Duan Y; Deng W; Guan Y; Huang Y; Yin Z
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30832274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetics of isolated electrified drops.
    Pillai R; Berry JD; Harvie DJ; Davidson MR
    Soft Matter; 2016 Apr; 12(14):3310-25. PubMed ID: 26954299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle-covered drops in electric fields: drop deformation and surface particle organization.
    Mikkelsen A; Khobaib K; Eriksen FK; Måløy KJ; Rozynek Z
    Soft Matter; 2018 Jul; 14(26):5442-5451. PubMed ID: 29901062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of microfluidic droplets.
    Baroud CN; Gallaire F; Dangla R
    Lab Chip; 2010 Aug; 10(16):2032-45. PubMed ID: 20559601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic mixing of nonpolar liquids by contact charge electrophoresis.
    Cartier CA; Drews AM; Bishop KJ
    Lab Chip; 2014 Nov; 14(21):4230-6. PubMed ID: 25190290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-stream migration of drops suspended in Poiseuille flow in the presence of an electric field.
    Nath B; Biswas G; Dalal A; Sahu KC
    Phys Rev E; 2018 Jun; 97(6-1):063106. PubMed ID: 30011518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 2D electrohydrodynamic model for electrorotation of fluid drops.
    Feng JQ
    J Colloid Interface Sci; 2002 Feb; 246(1):112-21. PubMed ID: 16290391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput sorting of drops in microfluidic chips using electric capacitance.
    Pit AM; de Ruiter R; Kumar A; Wijnperlé D; Duits MH; Mugele F
    Biomicrofluidics; 2015 Jul; 9(4):044116. PubMed ID: 26339316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrowetting: a versatile tool for drop manipulation, generation, and characterization.
    Mugele F; Duits M; van den Ende D
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):115-23. PubMed ID: 20004880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water slug to drop and film transitions in gas-flow channels.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Dec; 29(48):15122-36. PubMed ID: 24206393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Electrically Modulated Colloidal Droplet Transport.
    Dey R; Ghosh UU; Chakraborty S; DasGupta S
    Langmuir; 2015 Oct; 31(41):11269-78. PubMed ID: 26422170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple, robust storage of drops and fluids in a microfluidic device.
    Boukellal H; Selimović S; Jia Y; Cristobal G; Fraden S
    Lab Chip; 2009 Jan; 9(2):331-8. PubMed ID: 19107293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratcheted electrophoresis for rapid particle transport.
    Drews AM; Lee HY; Bishop KJ
    Lab Chip; 2013 Nov; 13(22):4295-8. PubMed ID: 24064932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drop formation via breakup of a liquid bridge in an AC electric field.
    Lee BS; Cho HJ; Lee JG; Huh N; Choi JW; Kang IS
    J Colloid Interface Sci; 2006 Oct; 302(1):294-307. PubMed ID: 16797576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-in-Water Droplets by Passive Microfluidic Flow Focusing.
    Moon BU; Abbasi N; Jones SG; Hwang DK; Tsai SS
    Anal Chem; 2016 Apr; 88(7):3982-9. PubMed ID: 26959358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.