These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 29347668)
1. Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs. He ZC; Huang XY; Yu CS Phys Rev E; 2017 Nov; 96(5-1):052126. PubMed ID: 29347668 [TBL] [Abstract][Full Text] [Related]
2. Efficiency estimation for an equilibrium version of the Maxwell refrigerator. Joseph T; V K Phys Rev E; 2021 Feb; 103(2-1):022131. PubMed ID: 33735980 [TBL] [Abstract][Full Text] [Related]
3. Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Yu CS; Zhu QY Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052142. PubMed ID: 25493774 [TBL] [Abstract][Full Text] [Related]
5. Quantum self-contained refrigerator in terms of the cavity quantum electrodynamics in the weak internal-coupling regime. Yu CS; Guo BQ; Liu T Opt Express; 2019 Mar; 27(5):6863-6877. PubMed ID: 30876263 [TBL] [Abstract][Full Text] [Related]
7. Minimal self-contained quantum refrigeration machine based on four quantum dots. Venturelli D; Fazio R; Giovannetti V Phys Rev Lett; 2013 Jun; 110(25):256801. PubMed ID: 23829751 [TBL] [Abstract][Full Text] [Related]
8. Performance of a quantum heat engine at strong reservoir coupling. Newman D; Mintert F; Nazir A Phys Rev E; 2017 Mar; 95(3-1):032139. PubMed ID: 28415330 [TBL] [Abstract][Full Text] [Related]
9. Transport through a Majorana Island in the Strong Tunneling Regime. Lutchyn RM; Glazman LI Phys Rev Lett; 2017 Aug; 119(5):057002. PubMed ID: 28949747 [TBL] [Abstract][Full Text] [Related]
10. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Singh V; Müstecaplıoğlu ÖE Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082 [TBL] [Abstract][Full Text] [Related]
11. Polarization oscillations of near-field thermal emission. Machida M; Narimanov E; Schotland JC J Opt Soc Am A Opt Image Sci Vis; 2016 Jun; 33(6):1071-5. PubMed ID: 27409433 [TBL] [Abstract][Full Text] [Related]
12. Cooling with fermionic thermal reservoirs. Damas GG; de Assis RJ; de Almeida NG Phys Rev E; 2023 Mar; 107(3-1):034128. PubMed ID: 37073057 [TBL] [Abstract][Full Text] [Related]
13. Entanglement enhances cooling in microscopic quantum refrigerators. Brunner N; Huber M; Linden N; Popescu S; Silva R; Skrzypczyk P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032115. PubMed ID: 24730798 [TBL] [Abstract][Full Text] [Related]
14. Measurement of the Frequency of the 2 ^{3}S-2 ^{3}P Transition of ^{4}He. Zheng X; Sun YR; Chen JJ; Jiang W; Pachucki K; Hu SM Phys Rev Lett; 2017 Dec; 119(26):263002. PubMed ID: 29328711 [TBL] [Abstract][Full Text] [Related]
15. Ballistic propagation of density correlations and excess wall forces in quenched granular media. Schindler T; Rohwer CM Phys Rev E; 2020 Nov; 102(5-1):052901. PubMed ID: 33327181 [TBL] [Abstract][Full Text] [Related]
16. From power law to Anderson localization in nonlinear Schrödinger equation with nonlinear randomness. Iomin A Phys Rev E; 2019 Nov; 100(5-1):052123. PubMed ID: 31869911 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures. Okamoto S; Alvarez G; Dagotto E; Tohyama T Phys Rev E; 2018 Apr; 97(4-1):043308. PubMed ID: 29758620 [TBL] [Abstract][Full Text] [Related]
18. Quantum synchronization in an optomechanical system based on Lyapunov control. Li W; Li C; Song H Phys Rev E; 2016 Jun; 93(6):062221. PubMed ID: 27415268 [TBL] [Abstract][Full Text] [Related]
19. Efficiencies and Work Losses for Cycles Interacting with Reservoirs of Apparent Negative Temperatures. Struchtrup H Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267463 [TBL] [Abstract][Full Text] [Related]