These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 29347735)
1. Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations. Rana N; Ghosh P; Perlekar P Phys Rev E; 2017 Nov; 96(5-1):052403. PubMed ID: 29347735 [TBL] [Abstract][Full Text] [Related]
2. Morphodynamics of a growing microbial colony driven by cell death. Ghosh P; Levine H Phys Rev E; 2017 Nov; 96(5-1):052404. PubMed ID: 29347664 [TBL] [Abstract][Full Text] [Related]
3. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model. Zhang X; Wang X; Nie K; Li M; Sun Q Phys Biol; 2016 Jul; 13(4):046002. PubMed ID: 27434099 [TBL] [Abstract][Full Text] [Related]
4. Fractal morphogenesis by a bacterial cell population. Matsuyama T; Matsushita M Crit Rev Microbiol; 1993; 19(2):117-35. PubMed ID: 8338618 [TBL] [Abstract][Full Text] [Related]
5. Macroscopic model of self-propelled bacteria swarming with regular reversals. Gejji R; Lushnikov PM; Alber M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021903. PubMed ID: 22463240 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamics of bacterial colonies: a model. Lega J; Passot T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031906. PubMed ID: 12689100 [TBL] [Abstract][Full Text] [Related]
7. Modeling of spatiotemporal patterns in bacterial colonies. Lacasta AM; Cantalapiedra IR; Auguet CE; Peñaranda A; Ramírez-Piscina L Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7036-41. PubMed ID: 11969692 [TBL] [Abstract][Full Text] [Related]
9. Branching instability in expanding bacterial colonies. Giverso C; Verani M; Ciarletta P J R Soc Interface; 2015 Mar; 12(104):20141290. PubMed ID: 25652464 [TBL] [Abstract][Full Text] [Related]
10. Scaling of mesoscale simulations of polymer melts with the bare friction coefficient. Kindt P; Briels WJ J Chem Phys; 2005 Dec; 123(22):224903. PubMed ID: 16375506 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of a Campbell-like stochastic delay model for bacteriophage infection. Carletti M Math Med Biol; 2006 Dec; 23(4):297-310. PubMed ID: 16801387 [TBL] [Abstract][Full Text] [Related]
12. Two continuum models for the spreading of myxobacteria swarms. Gallegos A; Mazzag B; Mogilner A Bull Math Biol; 2006 May; 68(4):837-61. PubMed ID: 16802086 [TBL] [Abstract][Full Text] [Related]
13. Range expansion of heterogeneous populations. Reiter M; Rulands S; Frey E Phys Rev Lett; 2014 Apr; 112(14):148103. PubMed ID: 24766021 [TBL] [Abstract][Full Text] [Related]
14. Nonuniversality of front fluctuations for compact colonies of nonmotile bacteria. Santalla SN; Rodríguez-Laguna J; Abad JP; Marín I; Espinosa MDM; Muñoz-García J; Vázquez L; Cuerno R Phys Rev E; 2018 Jul; 98(1-1):012407. PubMed ID: 30110795 [TBL] [Abstract][Full Text] [Related]
15. Mechanically-driven phase separation in a growing bacterial colony. Ghosh P; Mondal J; Ben-Jacob E; Levine H Proc Natl Acad Sci U S A; 2015 Apr; 112(17):E2166-73. PubMed ID: 25870260 [TBL] [Abstract][Full Text] [Related]
16. Development of a global stochastic model relating the distribution of individual cell and population physiological states. McKellar RC; Lu X Int J Food Microbiol; 2005 Apr; 100(1-3):33-40. PubMed ID: 15854690 [TBL] [Abstract][Full Text] [Related]
17. Self-similar dynamics of bacterial chemotaxis. Ngamsaad W; Khompurngson K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):062901. PubMed ID: 23367993 [TBL] [Abstract][Full Text] [Related]
18. Minimalistic behavioral rule derived from bacterial chemotaxis in a stochastic resonance setup. Ikemoto S; DallaLibera F; Hosoda K; Ishiguro H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021905. PubMed ID: 22463242 [TBL] [Abstract][Full Text] [Related]
19. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study. Brandt-Pollmann U; Lebiedz D; Diehl M; Sager S; Schlöder J Chaos; 2005 Sep; 15(3):33901. PubMed ID: 16252992 [TBL] [Abstract][Full Text] [Related]
20. Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models. Simpson MJ; Baker RE; McCue SW Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021901. PubMed ID: 21405857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]