BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 29347850)

  • 1. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals.
    Emami S; Siahi-Shadbad M; Barzegar-Jalali M; Adibkia K
    Drug Dev Ind Pharm; 2018 Jun; 44(6):1034-1047. PubMed ID: 29347850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization.
    Basavoju S; Boström D; Velaga SP
    Pharm Res; 2008 Mar; 25(3):530-41. PubMed ID: 17703346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical characterisation and evaluation of cocrystals: Importance of in vitro dissolution conditions and type of coformer.
    Tomaszewska I; Karki S; Shur J; Price R; Fotaki N
    Int J Pharm; 2013 Sep; 453(2):380-8. PubMed ID: 23727143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent solubility of indomethacin-saccharin and carbamazepine-saccharin cocrystals in aqueous media.
    Alhalaweh A; Roy L; Rodríguez-Hornedo N; Velaga SP
    Mol Pharm; 2012 Sep; 9(9):2605-12. PubMed ID: 22867056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green production of cocrystals using a new solvent-free approach by spray congealing.
    Duarte Í; Andrade R; Pinto JF; Temtem M
    Int J Pharm; 2016 Jun; 506(1-2):68-78. PubMed ID: 27073084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process.
    Zhang GC; Lin HL; Lin SY
    J Pharm Biomed Anal; 2012 Jul; 66():162-9. PubMed ID: 22497855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-Scale Assays for Studying Dissolution of Pharmaceutical Cocrystals for Oral Administration.
    Box KJ; Comer J; Taylor R; Karki S; Ruiz R; Price R; Fotaki N
    AAPS PharmSciTech; 2016 Apr; 17(2):245-51. PubMed ID: 26208438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion.
    Boksa K; Otte A; Pinal R
    J Pharm Sci; 2014 Sep; 103(9):2904-2910. PubMed ID: 24807421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture.
    Padrela L; de Azevedo EG; Velaga SP
    Drug Dev Ind Pharm; 2012 Aug; 38(8):923-9. PubMed ID: 22092083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Indomethacin-Saccharin Cocrystals during Wet Granulation: Role of Polymeric Excipients.
    Tanaka R; Duggirala NK; Hattori Y; Otsuka M; Suryanarayanan R
    Mol Pharm; 2020 Jan; 17(1):274-283. PubMed ID: 31756100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram.
    Hong C; Xie Y; Yao Y; Li G; Yuan X; Shen H
    Pharm Res; 2015 Jan; 32(1):47-60. PubMed ID: 24939640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SpeedMixing: Rapid Tribochemical Synthesis and Discovery of Pharmaceutical Cocrystals without Milling or Grinding Media.
    Teoh Y; Ayoub G; Huskić I; Titi HM; Nickels CW; Herrmann B; Friščić T
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202206293. PubMed ID: 35894150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the polymer matrix in solvent-free hot melt extrusion continuous process for mechanochemical synthesis of pharmaceutical cocrystal.
    Gajda M; Nartowski KP; Pluta J; Karolewicz B
    Eur J Pharm Biopharm; 2018 Oct; 131():48-59. PubMed ID: 30205892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics Study of Cocrystal Formation Between Indomethacin and Saccharin Using High-Shear Granulation With In Situ Raman Spectroscopy.
    Tanaka R; Hattori Y; Ashizawa K; Otsuka M
    J Pharm Sci; 2019 Oct; 108(10):3201-3208. PubMed ID: 31279736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals.
    Gao Y; Gao J; Liu Z; Kan H; Zu H; Sun W; Zhang J; Qian S
    Int J Pharm; 2012 Nov; 438(1-2):327-35. PubMed ID: 22989978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds.
    Shiraki K; Takata N; Takano R; Hayashi Y; Terada K
    Pharm Res; 2008 Nov; 25(11):2581-92. PubMed ID: 18651208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPLC determination of olanzapine and carbamazepine in their nicotinamide cocrystals and investigation of the dissolution profiles of cocrystal tablet formulations.
    Renkoğlu P; Çelebier M; Arıca-Yegin B
    Pharm Dev Technol; 2015 May; 20(3):380-4. PubMed ID: 24521464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of indomethacin-saccharin cocrystals.
    Jung MS; Kim JS; Kim MS; Alhalaweh A; Cho W; Hwang SJ; Velaga SP
    J Pharm Pharmacol; 2010 Nov; 62(11):1560-8. PubMed ID: 21039541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Coformer Selection on In Vitro and In Vivo Performance of Adefovir Dipivoxil Cocrystals.
    Li L; Pang Z; Ma K; Gao Y; Zheng D; Wei Y; Zhang J; Qian S
    Pharm Res; 2021 Oct; 38(10):1777-1791. PubMed ID: 34729701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.