These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 29347966)

  • 41. Deep learning models for bacteria taxonomic classification of metagenomic data.
    Fiannaca A; La Paglia L; La Rosa M; Lo Bosco G; Renda G; Rizzo R; Gaglio S; Urso A
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):198. PubMed ID: 30066629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics.
    Escobar-Zepeda A; Godoy-Lozano EE; Raggi L; Segovia L; Merino E; Gutiérrez-Rios RM; Juarez K; Licea-Navarro AF; Pardo-Lopez L; Sanchez-Flores A
    Sci Rep; 2018 Aug; 8(1):12034. PubMed ID: 30104688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A user's guide to quantitative and comparative analysis of metagenomic datasets.
    Luo C; Rodriguez-R LM; Konstantinidis KT
    Methods Enzymol; 2013; 531():525-47. PubMed ID: 24060135
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing.
    Tsai YC; Conlan S; Deming C; ; Segre JA; Kong HH; Korlach J; Oh J
    mBio; 2016 Feb; 7(1):e01948-15. PubMed ID: 26861018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A statistical framework for accurate taxonomic assignment of metagenomic sequencing reads.
    Jiang H; An L; Lin SM; Feng G; Qiu Y
    PLoS One; 2012; 7(10):e46450. PubMed ID: 23049702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A scalable assembly-free variable selection algorithm for biomarker discovery from metagenomes.
    Gkanogiannis A; Gazut S; Salanoubat M; Kanj S; Brüls T
    BMC Bioinformatics; 2016 Aug; 17(1):311. PubMed ID: 27542753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia.
    Nelson WC; Maezato Y; Wu YW; Romine MF; Lindemann SR
    Appl Environ Microbiol; 2016 Jan; 82(1):255-67. PubMed ID: 26497460
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using populations of human and microbial genomes for organism detection in metagenomes.
    Ames SK; Gardner SN; Marti JM; Slezak TR; Gokhale MB; Allen JE
    Genome Res; 2015 Jul; 25(7):1056-67. PubMed ID: 25926546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An ORFome assembly approach to metagenomics sequences analysis.
    Ye Y; Tang H
    J Bioinform Comput Biol; 2009 Jun; 7(3):455-71. PubMed ID: 19507285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aligner optimization increases accuracy and decreases compute times in multi-species sequence data.
    Robinson KM; Hawkins AS; Santana-Cruz I; Adkins RS; Shetty AC; Nagaraj S; Sadzewicz L; Tallon LJ; Rasko DA; Fraser CM; Mahurkar A; Silva JC; Dunning Hotopp JC
    Microb Genom; 2017 Sep; 3(9):e000122. PubMed ID: 29114401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating DNA coverage and abundance in metagenomes using a gamma approximation.
    Hooper SD; Dalevi D; Pati A; Mavromatis K; Ivanova NN; Kyrpides NC
    Bioinformatics; 2010 Feb; 26(3):295-301. PubMed ID: 20008478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimating the total genome length of a metagenomic sample using k-mers.
    Hua K; Zhang X
    BMC Genomics; 2019 Apr; 20(Suppl 2):183. PubMed ID: 30967110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial abundance, activity and population genomic profiling with mOTUs2.
    Milanese A; Mende DR; Paoli L; Salazar G; Ruscheweyh HJ; Cuenca M; Hingamp P; Alves R; Costea PI; Coelho LP; Schmidt TSB; Almeida A; Mitchell AL; Finn RD; Huerta-Cepas J; Bork P; Zeller G; Sunagawa S
    Nat Commun; 2019 Mar; 10(1):1014. PubMed ID: 30833550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The selection of software and database for metagenomics sequence analysis impacts the outcome of microbial profiling and pathogen detection.
    Xu R; Rajeev S; Salvador LCM
    PLoS One; 2023; 18(4):e0284031. PubMed ID: 37027361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removing contaminants from databases of draft genomes.
    Lu J; Salzberg SL
    PLoS Comput Biol; 2018 Jun; 14(6):e1006277. PubMed ID: 29939994
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [A review on the bioinformatics pipelines for metagenomic research].
    Ye DD; Fan MM; Guan Q; Chen HJ; Ma ZS
    Dongwuxue Yanjiu; 2012 Dec; 33(6):574-85. PubMed ID: 23266976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Joint Analysis of Long and Short Reads Enables Accurate Estimates of Microbiome Complexity.
    Bankevich A; Pevzner PA
    Cell Syst; 2018 Aug; 7(2):192-200.e3. PubMed ID: 30056005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pan-Genome Storage and Analysis Techniques.
    Zekic T; Holley G; Stoye J
    Methods Mol Biol; 2018; 1704():29-53. PubMed ID: 29277862
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MetaMLP: A Fast Word Embedding Based Classifier to Profile Target Gene Databases in Metagenomic Samples.
    Arango-Argoty GA; Heath LS; Pruden A; Vikesland PJ; Zhang L
    J Comput Biol; 2021 Nov; 28(11):1063-1074. PubMed ID: 34665648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PanFP: pangenome-based functional profiles for microbial communities.
    Jun SR; Robeson MS; Hauser LJ; Schadt CW; Gorin AA
    BMC Res Notes; 2015 Sep; 8():479. PubMed ID: 26409790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.