BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29348167)

  • 1. Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin.
    Libiad M; Motl N; Akey DL; Sakamoto N; Fearon ER; Smith JL; Banerjee R
    J Biol Chem; 2018 Feb; 293(8):2675-2686. PubMed ID: 29348167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase-rhodanese fusion protein functions in sulfur assimilation.
    Motl N; Skiba MA; Kabil O; Smith JL; Banerjee R
    J Biol Chem; 2017 Aug; 292(34):14026-14038. PubMed ID: 28684420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of a central intermediate in hydrogen sulfide metabolism by a novel human sulfurtransferase and its yeast ortholog.
    Melideo SL; Jackson MR; Jorns MS
    Biochemistry; 2014 Jul; 53(28):4739-53. PubMed ID: 24981631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced thioredoxin as a sulfur-acceptor substrate for rhodanese.
    Nandi DL; Westley J
    Int J Biochem Cell Biol; 1998 Sep; 30(9):973-7. PubMed ID: 9785461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin.
    Ray WK; Zeng G; Potters MB; Mansuri AM; Larson TJ
    J Bacteriol; 2000 Apr; 182(8):2277-84. PubMed ID: 10735872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains.
    Hänzelmann P; Dahl JU; Kuper J; Urban A; Müller-Theissen U; Leimkühler S; Schindelin H
    Protein Sci; 2009 Dec; 18(12):2480-91. PubMed ID: 19798741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodanese as a thioredoxin oxidase.
    Nandi DL; Horowitz PM; Westley J
    Int J Biochem Cell Biol; 2000 Apr; 32(4):465-73. PubMed ID: 10762072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria.
    Ran M; Li Q; Xin Y; Ma S; Zhao R; Wang M; Xun L; Xia Y
    Redox Biol; 2022 Jul; 53():102345. PubMed ID: 35653932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of the roles of sulfide oxidase and rhodanese in the detoxification of sulfide by the colonic mucosa.
    Wilson K; Mudra M; Furne J; Levitt M
    Dig Dis Sci; 2008 Jan; 53(1):277-83. PubMed ID: 17551834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases.
    Kruithof PD; Lunev S; Aguilar Lozano SP; de Assis Batista F; Al-Dahmani ZM; Joles JA; Dolga AM; Groves MR; van Goor H
    Biochim Biophys Acta Mol Basis Dis; 2020 Jun; 1866(6):165716. PubMed ID: 32061776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of mammalian 3-mercaptopyruvate sulfurtransferase.
    Nagahara N; Nagano M; Ito T; Suzuki H
    Methods Enzymol; 2015; 554():229-54. PubMed ID: 25725525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodanese-thioredoxin system and allyl sulfur compounds.
    Sabelli R; Iorio E; De Martino A; Podo F; Ricci A; Viticchiè G; Rotilio G; Paci M; Melino S
    FEBS J; 2008 Aug; 275(15):3884-99. PubMed ID: 18616471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative pathway of H
    Nagahara N; Koike S; Nirasawa T; Kimura H; Ogasawara Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):648-653. PubMed ID: 29331374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics.
    Libiad M; Sriraman A; Banerjee R
    J Biol Chem; 2015 Sep; 290(39):23579-88. PubMed ID: 26269602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidity of persulfides and its modulation by the protein environments in sulfide quinone oxidoreductase and thiosulfate sulfurtransferase.
    Benchoam D; Cuevasanta E; Roman JV; Banerjee R; Alvarez B
    J Biol Chem; 2024 May; 300(5):107149. PubMed ID: 38479599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational analysis and chemical reactivity of the multidomain sulfurtransferase, Staphylococcus aureus CstA.
    Higgins KA; Peng H; Luebke JL; Chang FM; Giedroc DP
    Biochemistry; 2015 Apr; 54(14):2385-98. PubMed ID: 25793461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of Leishmania major 3-mercaptopyruvate sulfurtransferase. A three-domain architecture with a serine protease-like triad at the active site.
    Alphey MS; Williams RA; Mottram JC; Coombs GH; Hunter WN
    J Biol Chem; 2003 Nov; 278(48):48219-27. PubMed ID: 12952945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unusual tandem-domain rhodanese harbouring two active sites identified in Desulfitobacterium hafniense.
    Prat L; Maillard J; Rohrbach-Brandt E; Holliger C
    FEBS J; 2012 Aug; 279(15):2754-67. PubMed ID: 22686689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.