These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29348411)

  • 1. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products.
    Sim JY; Ahn CG; Jeong EJ; Kim BK
    Sci Rep; 2018 Jan; 8(1):1059. PubMed ID: 29348411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IR-spectroscopy of skin in vivo: Optimal skin sites and properties for non-invasive glucose measurement by photoacoustic and photothermal spectroscopy.
    Bauer A; Hertzberg O; Küderle A; Strobel D; Pleitez MA; Mäntele W
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28417584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy.
    Jin Y; Yin Y; Li C; Liu H; Shi J
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid.
    Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W
    Rev Sci Instrum; 2013 Aug; 84(8):084901. PubMed ID: 24007090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system.
    Pai PP; Sanki PK; Sarangi S; Banerjee S
    Rev Sci Instrum; 2015 Jun; 86(6):064901. PubMed ID: 26133859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic spectroscopy that uses a resonant characteristic of a microphone for in vitro measurements of glucose concentration.
    Joo Yong Sim ; Chang-Geun Ahn ; Eunju Jeong ; Bong Kyu Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4861-4864. PubMed ID: 28269359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics.
    Kottmann J; Rey JM; Sigrist MW
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27735878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Numerical Investigation of a Photoacoustic Resonator for Solid Samples: Towards a Non-Invasive Glucose Sensor.
    El-Busaidy S; Baumann B; Wolff M; Duggen L; Bruhns H
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative spectroscopic photoacoustic imaging: a review.
    Cox B; Laufer JG; Arridge SR; Beard PC
    J Biomed Opt; 2012 Jun; 17(6):061202. PubMed ID: 22734732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement.
    Pleitez M; von Lilienfeld-Toal H; Mäntele W
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):61-5. PubMed ID: 22000639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stratum corneum studies with photoacoustic spectroscopy.
    Rosencwaig A; Pines E
    J Invest Dermatol; 1977 Sep; 69(3):296-8. PubMed ID: 894065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy.
    Pleitez MA; Lieblein T; Bauer A; Hertzberg O; von Lilienfeld-Toal H; Mäntele W
    Anal Chem; 2013 Jan; 85(2):1013-20. PubMed ID: 23214424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic Photoacoustic Imaging of Gold Nanorods.
    Namen AV; Luke GP
    Methods Mol Biol; 2017; 1570():179-194. PubMed ID: 28238137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo photoacoustic imaging of model of port wine stains.
    Yuan K; Yuan Y; Gu Y; Gao J; Xing D
    J Xray Sci Technol; 2012; 20(2):249-54. PubMed ID: 22635179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Imaging of Microvasculature during Anesthesia with High-Resolution Photoacoustic Microscopy.
    Zhang X; Qian X; Tao C; Liu X
    Ultrasound Med Biol; 2018 May; 44(5):1110-1118. PubMed ID: 29499917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical methods for measurements of skin penetration.
    Gotter B; Faubel W; Neubert RH
    Skin Pharmacol Physiol; 2008; 21(3):156-65. PubMed ID: 18523413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Near Infrared Virtual Intraoperative Surgical Photoacoustic Optical Coherence Tomography.
    Lee D; Lee C; Kim S; Zhou Q; Kim J; Kim C
    Sci Rep; 2016 Oct; 6():35176. PubMed ID: 27731390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging.
    Jin T; Guo H; Jiang H; Ke B; Xi L
    Opt Lett; 2017 Nov; 42(21):4434-4437. PubMed ID: 29088181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic depth profiling of a skin model for non-invasive glucose measurement.
    Wadamori N; Shinohara R; Ishihara Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5644-7. PubMed ID: 19163997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive monitoring of metabolites using near infrared spectroscopy: state of the art.
    Heise HM
    Horm Metab Res; 1996 Oct; 28(10):527-34. PubMed ID: 8934210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.