These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29348615)

  • 1. Nucleation and Ostwald Growth of Particles in Fe-O-Al-Ca Melt.
    Wang L; Li J; Yang S; Chen C; Jin H; Li X
    Sci Rep; 2018 Jan; 8(1):1135. PubMed ID: 29348615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarsening Behavior of Particles in Fe-O-Al-Ca Melts.
    Wang L; Li J; Yang S; Chen C; Jin H; Li X
    Sci Rep; 2019 Mar; 9(1):3670. PubMed ID: 30842535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mg Treatment on the Nucleation and Ostwald Growth of Inclusions in Fe-O-Al-Mg Melt.
    Li Y; Wang L; Chen C; Li J; Li X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32731578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From nucleation and coarsening to coalescence in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190247. PubMed ID: 32279640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural evolution of calcia during calcium deoxidation in Fe-O-Ca melt.
    Xiao Y; Lei H; Zhang H; Wang G; Wang Q; Jin W
    Phys Chem Chem Phys; 2019 Jul; 21(25):13847-13855. PubMed ID: 31211308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of multi-step nucleation leading to various crystallization pathways from an Fe-O-Al melt.
    Wang GC; Wang Q; Li SL; Ai XG; Fan CG
    Sci Rep; 2014 May; 4():5082. PubMed ID: 24866413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic insight into the growth of calcia inclusions at the nanoscale: the case of Fe-O-Ca melt.
    Xiao Y; Lei H; Yang B; Zhao Y; Wang Q; Wang G
    RSC Adv; 2019 Apr; 9(20):11135-11141. PubMed ID: 35520241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis.
    Harada M; Katagiri E
    Langmuir; 2010 Dec; 26(23):17896-905. PubMed ID: 21047110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Temperature Cycling on Ostwald Ripening.
    van Westen T; Groot RD
    Cryst Growth Des; 2018 Sep; 18(9):4952-4962. PubMed ID: 30210267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.
    Chung SY; Kim YM; Choi SY; Kim JG
    ACS Nano; 2015 Jan; 9(1):327-35. PubMed ID: 25588182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence.
    Madras G; McCoy BJ
    J Colloid Interface Sci; 2003 May; 261(2):423-33. PubMed ID: 16256552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Stability of Nano-formulations Prepared by Direct Synthesis: Simulated Ostwald Ripening of a Typical Nanocrystal Distribution Post-nucleation.
    Skrdla PJ; Yang H
    AAPS PharmSciTech; 2019 Jan; 20(1):34. PubMed ID: 30603812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe(III) oxides.
    Hu Y; Lee B; Bell C; Jun YS
    Langmuir; 2012 May; 28(20):7737-46. PubMed ID: 22568400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ostwald ripening of confined nanoparticles: chemomechanical coupling in nanopores.
    Gommes CJ
    Nanoscale; 2019 Apr; 11(15):7386-7393. PubMed ID: 30938749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ostwald ripening of binary alloy particles.
    Burlakov VM; Kantorovich L
    J Chem Phys; 2011 Jan; 134(2):024521. PubMed ID: 21241134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental sulfur coarsening kinetics.
    Garcia AA; Druschel GK
    Geochem Trans; 2014; 15():11. PubMed ID: 26561455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of YF3 nanoparticle formation in reverse micelles.
    Lemyre JL; Lamarre S; Beaupré A; Ritcey AM
    Langmuir; 2011 Oct; 27(19):11824-34. PubMed ID: 21842856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition.
    Desikusumastuti A; Qin Z; Happel M; Staudt T; Lykhach Y; Laurin M; Rohr F; Shaikhutdinov S; Libuda J
    Phys Chem Chem Phys; 2009 Apr; 11(14):2514-24. PubMed ID: 19325986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior.
    Kandori K; Toshima S; Wakamura M; Fukusumi M; Morisada Y
    J Phys Chem B; 2010 Feb; 114(7):2399-404. PubMed ID: 20121272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions.
    Ouyang R; Liu JX; Li WX
    J Am Chem Soc; 2013 Feb; 135(5):1760-71. PubMed ID: 23272702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.