BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29348717)

  • 21. Determination of campesterol, stigmasterol, and beta-sitosterol in saw palmetto raw materials and dietary supplements by gas chromatography: collaborative study.
    Sorenson WR; Sullivan D
    J AOAC Int; 2007; 90(3):670-8. PubMed ID: 17580618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of beta-sitosterol, stigmasterol and ergosterin in A. roxburghii using supercritical fluid extraction followed by liquid chromatography/atmospheric pressure chemical ionization ion trap mass spectrometry.
    Huang L; Zhong T; Chen T; Ye Z; Chen G
    Rapid Commun Mass Spectrom; 2007; 21(18):3024-32. PubMed ID: 17705339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene.
    Lee MH; Jeong JH; Seo JW; Shin CG; Kim YS; In JG; Yang DC; Yi JS; Choi YE
    Plant Cell Physiol; 2004 Aug; 45(8):976-84. PubMed ID: 15356323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture.
    Song X; Wu H; Yin Z; Lian M; Yin C
    Molecules; 2017 May; 22(6):. PubMed ID: 28545250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modesand ages.
    Tong AZ; Liu W; Liu Q; Xia GQ; Zhu JY
    BMC Microbiol; 2021 Jan; 21(1):18. PubMed ID: 33419388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quality evaluation of Panax ginseng adventitious roots based on ginsenoside constituents, functional genes, and ferric-reducing antioxidant power.
    Liang W; Wang S; Yao L; Wang J; Gao W
    J Food Biochem; 2019 Aug; 43(8):e12901. PubMed ID: 31368571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Processing on Residual Buprofezin Levels in Ginseng Products.
    Noh HH; Shin HW; Kim DJ; Lee JW; Jo SH; Kim D; Kyung KS
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33430085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seasonal Variation and Possible Biosynthetic Pathway of Ginsenosides in Korean Ginseng
    Kim D; Kim M; RaƱa GS; Han J
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30041413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Quality variation and ecotype division of Panax quinquefolium in China].
    Huang LF; Suo FM; Song JY; Wen MJ; Jia GL; Xie CX; Chen SL
    Yao Xue Xue Bao; 2013 Apr; 48(4):580-9. PubMed ID: 23833949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First Report of Rusty Root of
    Liyanapathiranage P; Avin FA; Oksel C; Swiggart E; Gao Y; Baysal-Gurel F
    Plant Dis; 2023 Jan; ():. PubMed ID: 36636749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Root Age-Dependent Changes in Arbuscular Mycorrhizal Fungal Communities Colonizing Roots of Panax ginseng.
    Kil YJ; Eo JK; Lee EH; Eom AH
    Mycobiology; 2014 Dec; 42(4):416-21. PubMed ID: 25606018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse.
    Jang IB; Lee DY; Yu J; Park HW; Mo HS; Park KC; Hyun DY; Lee EH; Kim KH; Oh CS
    J Ginseng Res; 2015 Oct; 39(4):345-53. PubMed ID: 26869827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quality Analysis of American Ginseng Cultivated in Heilongjiang Using UPLC-ESI
    Xia YG; Song Y; Liang J; Guo XD; Yang BY; Kuang HX
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30235827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots.
    Wang CZ; Aung HH; Ni M; Wu JA; Tong R; Wicks S; He TC; Yuan CS
    Planta Med; 2007 Jun; 73(7):669-74. PubMed ID: 17538869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.
    Kim YK; Kim YB; Uddin MR; Lee S; Kim SU; Park SU
    ACS Synth Biol; 2014 Oct; 3(10):773-9. PubMed ID: 24933610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Cultivation of Panax ginseng adventitious roots in bubble bioreactors].
    Zuo BM; Gao WY; Wang J; Yin SS; Liu H; Zhang LM
    Zhongguo Zhong Yao Za Zhi; 2012 Dec; 37(24):3706-11. PubMed ID: 23627164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of steam-processing of the Panax ginseng root on its inducible activity on granulocyte-colony stimulating factor secretion in intestinal epithelial cells in vitro.
    Ding K; Tabuchi Y; Makino T
    J Ethnopharmacol; 2022 Apr; 287():114927. PubMed ID: 34954265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation.
    Liu J; Liu Y; Wang Y; Abozeid A; Zu YG; Tang ZH
    J Pharm Biomed Anal; 2017 Feb; 135():176-185. PubMed ID: 28038384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years.
    Chung IM; Lim JJ; Ahn MS; Jeong HN; An TJ; Kim SH
    J Ginseng Res; 2016 Jan; 40(1):68-75. PubMed ID: 26843824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Ginsenoside Components of Various Tissues of New Zealand Forest-Grown Asian Ginseng (
    Chen W; Balan P; Popovich DG
    Biomolecules; 2020 Feb; 10(3):. PubMed ID: 32121159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.