These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 29349569)
21. Cloning and characterization of the xyl genes from Escherichia coli. Rosenfeld SA; Stevis PE; Ho NW Mol Gen Genet; 1984; 194(3):410-5. PubMed ID: 6330500 [TBL] [Abstract][Full Text] [Related]
22. Efficient production of polyhydroxybutyrate using lignocellulosic biomass derived from oil palm trunks by the inhibitor-tolerant strain Burkholderia ambifaria E5-3. Arai T; Aikawa S; Sudesh K; Arai W; Mohammad Rawi NF; Leh CPP; Mohamad Kassim MH; Tay GS; Kosugi A World J Microbiol Biotechnol; 2024 Jun; 40(8):242. PubMed ID: 38869634 [TBL] [Abstract][Full Text] [Related]
23. Engineering of a xylose metabolic pathway in Rhodococcus strains. Xiong X; Wang X; Chen S Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009 [TBL] [Abstract][Full Text] [Related]
24. Improved glucose and xylose co-utilization by overexpression of xylose isomerase and/or xylulokinase genes in oleaginous fungus Mucor circinelloides. Zan X; Sun J; Chu L; Cui F; Huo S; Song Y; Koffas MAG Appl Microbiol Biotechnol; 2021 Jul; 105(13):5565-5575. PubMed ID: 34215904 [TBL] [Abstract][Full Text] [Related]
25. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486 [TBL] [Abstract][Full Text] [Related]
27. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970 [TBL] [Abstract][Full Text] [Related]
28. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Ha SJ; Kim SR; Choi JH; Park MS; Jin YS Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987 [TBL] [Abstract][Full Text] [Related]
29. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Sasaki M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427 [TBL] [Abstract][Full Text] [Related]
30. Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari. Mendonça TT; Tavares RR; Cespedes LG; Sánchez-Rodriguez RJ; Schripsema J; Taciro MK; Gomez JG; Silva LF Int J Biol Macromol; 2017 May; 98():654-663. PubMed ID: 28167112 [TBL] [Abstract][Full Text] [Related]
31. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Rygus T; Scheler A; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948 [TBL] [Abstract][Full Text] [Related]
32. Dissolution of xylose metabolism in Lactococcus lactis. Erlandson KA; Park JH; Wissam ; El Khal ; Kao HH; Basaran P; Brydges S; Batt CA Appl Environ Microbiol; 2000 Sep; 66(9):3974-80. PubMed ID: 10966417 [TBL] [Abstract][Full Text] [Related]
34. A forward-design approach to increase the production of poly-3-hydroxybutyrate in genetically engineered Escherichia coli. Kelwick R; Kopniczky M; Bower I; Chi W; Chin MH; Fan S; Pilcher J; Strutt J; Webb AJ; Jensen K; Stan GB; Kitney R; Freemont P PLoS One; 2015; 10(2):e0117202. PubMed ID: 25699671 [TBL] [Abstract][Full Text] [Related]
35. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]