These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29349569)

  • 21. Cloning and characterization of the xyl genes from Escherichia coli.
    Rosenfeld SA; Stevis PE; Ho NW
    Mol Gen Genet; 1984; 194(3):410-5. PubMed ID: 6330500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient production of polyhydroxybutyrate using lignocellulosic biomass derived from oil palm trunks by the inhibitor-tolerant strain Burkholderia ambifaria E5-3.
    Arai T; Aikawa S; Sudesh K; Arai W; Mohammad Rawi NF; Leh CPP; Mohamad Kassim MH; Tay GS; Kosugi A
    World J Microbiol Biotechnol; 2024 Jun; 40(8):242. PubMed ID: 38869634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved glucose and xylose co-utilization by overexpression of xylose isomerase and/or xylulokinase genes in oleaginous fungus Mucor circinelloides.
    Zan X; Sun J; Chu L; Cui F; Huo S; Song Y; Koffas MAG
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5565-5575. PubMed ID: 34215904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.
    Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ; Kim SR; Choi JH; Park MS; Jin YS
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari.
    Mendonça TT; Tavares RR; Cespedes LG; Sánchez-Rodriguez RJ; Schripsema J; Taciro MK; Gomez JG; Silva LF
    Int J Biol Macromol; 2017 May; 98():654-663. PubMed ID: 28167112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization.
    Rygus T; Scheler A; Allmansberger R; Hillen W
    Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissolution of xylose metabolism in Lactococcus lactis.
    Erlandson KA; Park JH; Wissam ; El Khal ; Kao HH; Basaran P; Brydges S; Batt CA
    Appl Environ Microbiol; 2000 Sep; 66(9):3974-80. PubMed ID: 10966417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803.
    Lee TC; Xiong W; Paddock T; Carrieri D; Chang IF; Chiu HF; Ungerer J; Hank Juo SH; Maness PC; Yu J
    Metab Eng; 2015 Jul; 30():179-189. PubMed ID: 26079651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A forward-design approach to increase the production of poly-3-hydroxybutyrate in genetically engineered Escherichia coli.
    Kelwick R; Kopniczky M; Bower I; Chi W; Chin MH; Fan S; Pilcher J; Strutt J; Webb AJ; Jensen K; Stan GB; Kitney R; Freemont P
    PLoS One; 2015; 10(2):e0117202. PubMed ID: 25699671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial polyhydroxybutyrate for electrospun fiber production.
    Acevedo F; Villegas P; Urtuvia V; Hermosilla J; Navia R; Seeger M
    Int J Biol Macromol; 2018 Jan; 106():692-697. PubMed ID: 28823514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production and recovery of poly-3-hydroxybutyrate bioplastics using agro-industrial residues of hemp hurd biomass.
    Khattab MM; Dahman Y
    Bioprocess Biosyst Eng; 2019 Jul; 42(7):1115-1127. PubMed ID: 30993443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
    Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF
    Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter.
    Nduko JM; Matsumoto K; Ooi T; Taguchi S
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2453-60. PubMed ID: 24337250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.