BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29349608)

  • 1. Comparative transcriptomics uncovers differences in photoautotrophic versus photoheterotrophic modes of nutrition in relation to secondary metabolites biosynthesis in Swertia chirayita.
    Pal T; Padhan JK; Kumar P; Sood H; Chauhan RS
    Mol Biol Rep; 2018 Apr; 45(2):77-98. PubMed ID: 29349608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways.
    Padhan JK; Kumar V; Sood H; Singh TR; Chauhan RS
    Phytochemistry; 2015 Aug; 116():38-47. PubMed ID: 26028519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T; Malhotra N; Chanumolu SK; Chauhan RS
    Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites.
    Rai A; Nakamura M; Takahashi H; Suzuki H; Saito K; Yamazaki M
    Plant Cell Rep; 2016 Oct; 35(10):2091-111. PubMed ID: 27378356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii.
    Liu Y; Wang Y; Guo F; Zhan L; Mohr T; Cheng P; Huo N; Gu R; Pei D; Sun J; Tang L; Long C; Huang L; Gu YQ
    Sci Rep; 2017 Feb; 7():43108. PubMed ID: 28225035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of intermediates through high-resolution mass spectrometry for constructing biosynthetic pathways for major chemical constituents in a medicinally important herb, Swertia chirayita.
    Kumar V; Sood H; Chauhan RS
    Nat Prod Res; 2015; 29(15):1449-55. PubMed ID: 25622657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical composition, antioxidant activity and HPLC profiles of Swertia species from Western Ghats.
    Kshirsagar P; Chavan J; Nimbalkar M; Yadav S; Dixit G; Gaikwad N
    Nat Prod Res; 2015; 29(8):780-4. PubMed ID: 25482162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative phytochemical, hepatoprotective and antioxidant activities of various samples of Swertia Chirayita collected from various cities of Pakistan.
    Mahmood S; Hussain S; Tabassum S; Malik F; Riaz H
    Pak J Pharm Sci; 2014 Nov; 27(6):1975-83. PubMed ID: 25362620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production from both wild harvest and cultivation: The cross-border Swertia chirayita (Gentianaceae) trade.
    Cunningham AB; Brinckmann JA; Schippmann U; Pyakurel D
    J Ethnopharmacol; 2018 Oct; 225():42-52. PubMed ID: 29960022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo antioxidant effects of the ethanolic extract of Swertia chirayita.
    Chen Y; Huang B; He J; Han L; Zhan Y; Wang Y
    J Ethnopharmacol; 2011 Jun; 136(2):309-15. PubMed ID: 21549823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Swertia chirayita (Gentianaceae) as a Traditional Medicinal Plant.
    Kumar V; Van Staden J
    Front Pharmacol; 2015; 6():308. PubMed ID: 26793105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatoprotective activity of Andrographis paniculata and Swertia chirayita.
    Nagalekshmi R; Menon A; Chandrasekharan DK; Nair CK
    Food Chem Toxicol; 2011 Dec; 49(12):3367-73. PubMed ID: 21983487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites.
    Dhiman N; Kumar A; Kumar D; Bhattacharya A
    Sci Rep; 2020 Oct; 10(1):17186. PubMed ID: 33057076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis in different tissues of a medicinal herb, Picrorhiza kurroa pinpoints transcription factors regulating picrosides biosynthesis.
    Vashisht I; Pal T; Sood H; Chauhan RS
    Mol Biol Rep; 2016 Dec; 43(12):1395-1409. PubMed ID: 27633652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of antioxidant, antibacterial, and antidiabetic potential of two traditional medicinal plants of India: Swertia cordata and Swertia chirayita.
    Roy P; Abdulsalam FI; Pandey DK; Bhattacharjee A; Eruvaram NR; Malik T
    Pharmacognosy Res; 2015 Jun; 7(Suppl 1):S57-62. PubMed ID: 26109789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic discrimination of Swertia mussotii and Swertia chirayita known as "Zangyinchen" in traditional Tibetan medicine by (1)H NMR-based metabolomics.
    Fan G; Luo WZ; Luo SH; Li Y; Meng XL; Zhou XD; Zhang Y
    J Pharm Biomed Anal; 2014 Sep; 98():364-70. PubMed ID: 24992216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.
    Garg A; Agrawal L; Misra RC; Sharma S; Ghosh S
    BMC Genomics; 2015 Sep; 16(1):659. PubMed ID: 26328761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Deep Transcriptome Analysis of Medicinal Plants for Gene Discovery in Biosynthesis of Plant Natural Products.
    Han R; Rai A; Nakamura M; Suzuki H; Takahashi H; Yamazaki M; Saito K
    Methods Enzymol; 2016; 576():19-45. PubMed ID: 27480681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific transcriptional biomarkers in medicinal plants: Application of large-scale meta-analysis and computational systems biology.
    Tahmasebi A; Ebrahimie E; Pakniyat H; Ebrahimi M; Mohammadi-Dehcheshmeh M
    Gene; 2019 Apr; 691():114-124. PubMed ID: 30620887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo assembly and transcriptome of Pfaffia glomerata uncovers the role of photoautotrophy and the P450 family genes in 20-hydroxyecdysone production.
    Batista DS; Koehler AD; Romanel E; de Souza VC; Silva TD; Almeida MC; Maciel TEF; Ferreira PRB; Felipe SHS; Saldanha CW; Maldaner J; Dias LLC; Festucci-Buselli RA; Otoni WC
    Protoplasma; 2019 May; 256(3):601-614. PubMed ID: 30357479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.