These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29349925)

  • 21. Variations in virulence and molecular biology among emerging strains of Clostridium difficile.
    Hunt JJ; Ballard JD
    Microbiol Mol Biol Rev; 2013 Dec; 77(4):567-81. PubMed ID: 24296572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shifts in the Gut Metabolome and
    Fletcher JR; Erwin S; Lanzas C; Theriot CM
    mSphere; 2018; 3(2):. PubMed ID: 29600278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycine fermentation by
    Rizvi A; Vargas-Cuebas G; Edwards AN; DiCandia MA; Carter ZA; Lee CD; Monteiro MP; McBride SM
    Infect Immun; 2023 Oct; 91(10):e0031923. PubMed ID: 37754683
    [No Abstract]   [Full Text] [Related]  

  • 24. Ethanolamine utilization in Vibrio alginolyticus.
    Khatri N; Khatri I; Subramanian S; Raychaudhuri S
    Biol Direct; 2012 Dec; 7():45; discussion 45. PubMed ID: 23234435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota.
    Fletcher JR; Pike CM; Parsons RJ; Rivera AJ; Foley MH; McLaren MR; Montgomery SA; Theriot CM
    Nat Commun; 2021 Jan; 12(1):462. PubMed ID: 33469019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acinetobacter baumannii Catabolizes Ethanolamine in the Absence of a Metabolosome and Converts Cobinamide into Adenosylated Cobamides.
    Villa EA; Escalante-Semerena JC
    mBio; 2022 Aug; 13(4):e0179322. PubMed ID: 35880884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxin B is essential for virulence of Clostridium difficile.
    Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI
    Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function σ factors in Clostridium difficile.
    Ho TD; Ellermeier CD
    Infect Immun; 2011 Aug; 79(8):3229-38. PubMed ID: 21628514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of a gene cluster required for proper rod shape, cell division, and pathogenesis in Clostridium difficile.
    Ransom EM; Williams KB; Weiss DS; Ellermeier CD
    J Bacteriol; 2014 Jun; 196(12):2290-300. PubMed ID: 24727226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ethanolamine Utilization in Bacteria.
    Kaval KG; Garsin DA
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins.
    Kofoid E; Rappleye C; Stojiljkovic I; Roth J
    J Bacteriol; 1999 Sep; 181(17):5317-29. PubMed ID: 10464203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis.
    Gregory AL; Pensinger DA; Hryckowian AJ
    PLoS Pathog; 2021 Oct; 17(10):e1009959. PubMed ID: 34673840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo commensal control of Clostridioides difficile virulence.
    Girinathan BP; DiBenedetto N; Worley JN; Peltier J; Arrieta-Ortiz ML; Immanuel SRC; Lavin R; Delaney ML; Cummins CK; Hoffman M; Luo Y; Gonzalez-Escalona N; Allard M; Onderdonk AB; Gerber GK; Sonenshein AL; Baliga NS; Dupuy B; Bry L
    Cell Host Microbe; 2021 Nov; 29(11):1693-1708.e7. PubMed ID: 34637781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile.
    Britton RA; Young VB
    Gastroenterology; 2014 May; 146(6):1547-53. PubMed ID: 24503131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection.
    Barketi-Klai A; Monot M; Hoys S; Lambert-Bordes S; Kuehne SA; Minton N; Collignon A; Dupuy B; Kansau I
    PLoS One; 2014; 9(5):e96876. PubMed ID: 24841151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C. difficile exploits a host metabolite produced during toxin-mediated disease.
    Pruss KM; Sonnenburg JL
    Nature; 2021 May; 593(7858):261-265. PubMed ID: 33911281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational approaches to understanding Clostridioides difficile metabolism and virulence.
    Jenior ML; Papin JA
    Curr Opin Microbiol; 2022 Feb; 65():108-115. PubMed ID: 34839237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Clostridium difficile proline racemase is not essential for early logarithmic growth and infection.
    Wu X; Hurdle JG
    Can J Microbiol; 2014 Apr; 60(4):251-4. PubMed ID: 24693984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response.
    Vedantam G; Clark A; Chu M; McQuade R; Mallozzi M; Viswanathan VK
    Gut Microbes; 2012; 3(2):121-34. PubMed ID: 22555464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localization and interaction studies of the Salmonella enterica ethanolamine ammonia-lyase (EutBC), its reactivase (EutA), and the EutT corrinoid adenosyltransferase.
    Costa FG; Escalante-Semerena JC
    Mol Microbiol; 2022 Sep; 118(3):191-207. PubMed ID: 35785499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.