These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29350087)

  • 1. Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling.
    Delmoral JC; Rua Ventura SM; Tavares JMR
    Proc Inst Mech Eng H; 2018 Mar; 232(3):271-281. PubMed ID: 29350087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech.
    Ruthven M; Miquel ME; King AP
    Comput Methods Programs Biomed; 2021 Jan; 198():105814. PubMed ID: 33197740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.
    Zourmand A; Mirhassani SM; Ting HN; Bux SI; Ng KH; Bilgen M; Jalaludin MA
    Biomed Eng Online; 2014 Jul; 13():103. PubMed ID: 25060583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the three-dimensional tongue shape using a three-index factor analysis model.
    Zheng Y; Hasegawa-Johnson M; Pizza S
    J Acoust Soc Am; 2003 Jan; 113(1):478-86. PubMed ID: 12558285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the automatic study of the vocal tract from magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Nov; 25(6):732-42. PubMed ID: 20952159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of vocal tract articulators in real-time magnetic resonance imaging.
    Ribeiro V; Isaieva K; Leclere J; Felblinger J; Vuissoz PA; Laprie Y
    Comput Methods Programs Biomed; 2024 Jan; 243():107907. PubMed ID: 37976615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vowel category dependence of the relationship between palate height, tongue height, and oral area.
    Hasegawa-Johnson M; Pizza S; Alwan A; Cha JS; Haker K
    J Speech Lang Hear Res; 2003 Jun; 46(3):738-53. PubMed ID: 14697000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation.
    Carey D; Miquel ME; Evans BG; Adank P; McGettigan C
    Cereb Cortex; 2017 May; 27(5):3064-3079. PubMed ID: 28334401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of tongue muscles from super-resolution magnetic resonance images.
    Ibragimov B; Prince JL; Murano EZ; Woo J; Stone M; Likar B; Pernuš F; Vrtovec T
    Med Image Anal; 2015 Feb; 20(1):198-207. PubMed ID: 25487963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully-automated tongue detection in ultrasound images.
    Karimi E; Ménard L; Laporte C
    Comput Biol Med; 2019 Aug; 111():103335. PubMed ID: 31279163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frame-rate full-vocal-tract 3D dynamic speech imaging.
    Fu M; Barlaz MS; Holtrop JL; Perry JL; Kuehn DP; Shosted RK; Liang ZP; Sutton BP
    Magn Reson Med; 2017 Apr; 77(4):1619-1629. PubMed ID: 27099178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stroboscopic articulography using fast magnetic resonance imaging.
    Mathiak K; Klose U; Ackermann H; Hertrich I; Kincses WE; Grodd W
    Int J Lang Commun Disord; 2000; 35(3):419-25. PubMed ID: 10963023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time speech MRI datasets with corresponding articulator ground-truth segmentations.
    Ruthven M; Peplinski AM; Adams DM; King AP; Miquel ME
    Sci Data; 2023 Dec; 10(1):860. PubMed ID: 38042857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compatibility between auditory and articulatory representations of vowels.
    Honda K; Kusakawa N
    Acta Otolaryngol Suppl; 1997; 532():103-5. PubMed ID: 9442853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part II. The rhotics.
    Alwan A; Narayanan S; Haker K
    J Acoust Soc Am; 1997 Feb; 101(2):1078-89. PubMed ID: 9035399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic off-resonance correction for spiral real-time MRI of speech.
    Lim Y; Lingala SG; Narayanan SS; Nayak KS
    Magn Reson Med; 2019 Jan; 81(1):234-246. PubMed ID: 30058147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound Images of the Tongue: A Tutorial for Assessment and Remediation of Speech Sound Errors.
    Preston JL; McAllister Byun T; Boyce SE; Hamilton S; Tiede M; Phillips E; Rivera-Campos A; Whalen DH
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.