BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29350185)

  • 1. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe.
    Liu CH; Qi FP; Wen FB; Long LP; Liu AJ; Yang RH
    Methods Appl Fluoresc; 2018 Jan; 6(2):024001. PubMed ID: 29350185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A turn-on NIR fluorescence and colourimetric cyanine probe for monitoring the thiol content in serum and the glutathione reductase assisted glutathione redox process.
    Maity D; Govindaraju T
    Org Biomol Chem; 2013 Apr; 11(13):2098-104. PubMed ID: 23306953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues.
    Xie JY; Li CY; Li YF; Fei J; Xu F; Ou-Yang J; Liu J
    Anal Chem; 2016 Oct; 88(19):9746-9752. PubMed ID: 27605432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of NIR Chromenylium-Cyanine Fluorophore Library for "Switch-ON" and Ratiometric Detection of Bio-Active Species In Vivo.
    Wei Y; Cheng D; Ren T; Li Y; Zeng Z; Yuan L
    Anal Chem; 2016 Feb; 88(3):1842-9. PubMed ID: 26730493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging.
    Huang C; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues.
    Yin J; Kwon Y; Kim D; Lee D; Kim G; Hu Y; Ryu JH; Yoon J
    J Am Chem Soc; 2014 Apr; 136(14):5351-8. PubMed ID: 24649915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging.
    Chen H; Lin W; Cui H; Jiang W
    Chemistry; 2015 Jan; 21(2):733-45. PubMed ID: 25388080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A visible and near-infrared, dual emission fluorescent probe based on thiol reactivity for selectively tracking mitochondrial glutathione in vitro.
    Xu Y; Li R; Zhou X; Li W; Ernest U; Wan H; Li L; Chen H; Yuan Z
    Talanta; 2019 Dec; 205():120125. PubMed ID: 31450407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of a precolumn fluorogenic reaction, separation, and detection of reduced glutathione.
    Wu J; Ferrance JP; Landers JP; Weber SG
    Anal Chem; 2010 Sep; 82(17):7267-73. PubMed ID: 20698502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye.
    Cheng G; Fan J; Sun W; Cao J; Hu C; Peng X
    Chem Commun (Camb); 2014 Jan; 50(8):1018-20. PubMed ID: 24310167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing Cyanine Reactivity for Optical Imaging and Drug Delivery.
    Gorka AP; Nani RR; Schnermann MJ
    Acc Chem Res; 2018 Dec; 51(12):3226-3235. PubMed ID: 30418020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-Specific Labeling of Proteins with Near-IR Heptamethine Cyanine Dyes.
    Lin CM; Usama SM; Burgess K
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30405016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids.
    Zhang Y; Li Y; Yan XP
    Anal Chem; 2009 Jun; 81(12):5001-7. PubMed ID: 19518148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic cyanine as a near-infrared fluorescent probe for the determination of nucleic acids.
    Zheng H; Li DH; Zhu CQ; Chen XL; Xu JG
    Fresenius J Anal Chem; 2000 Mar; 366(5):504-7. PubMed ID: 11220346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile and Sensitive Near-Infrared Fluorescence Probe for the Detection of Endogenous Alkaline Phosphatase Activity In Vivo.
    Li SJ; Li CY; Li YF; Fei J; Wu P; Yang B; Ou-Yang J; Nie SX
    Anal Chem; 2017 Jun; 89(12):6854-6860. PubMed ID: 28516761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanine-based NIR fluorescent probe for monitoring H
    Xiong J; Xia L; Huang Q; Huang J; Gu Y; Wang P
    Talanta; 2018 Jul; 184():109-114. PubMed ID: 29674020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine.
    Lim SY; Hong KH; Kim DI; Kwon H; Kim HJ
    J Am Chem Soc; 2014 May; 136(19):7018-25. PubMed ID: 24754635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo.
    Yin K; Yu F; Zhang W; Chen L
    Biosens Bioelectron; 2015 Dec; 74():156-64. PubMed ID: 26141101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells.
    Kong F; Liu R; Chu R; Wang X; Xu K; Tang B
    Chem Commun (Camb); 2013 Oct; 49(80):9176-8. PubMed ID: 23989532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.