BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 29350526)

  • 21. Constructing Densely Compacted Graphite/Si/SiO
    Wu H; Zheng L; Du N; Sun B; Ma J; Jiang Y; Gong J; Chen H; Wang L
    ACS Appl Mater Interfaces; 2021 May; 13(19):22323-22331. PubMed ID: 33955750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries.
    Mo R; Lei Z; Rooney D; Sun K
    ACS Nano; 2019 Jul; 13(7):7536-7544. PubMed ID: 31246005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional nanoporous Fe₂O₃/Fe₃C-graphene heterogeneous thin films for lithium-ion batteries.
    Yang Y; Fan X; Casillas G; Peng Z; Ruan G; Wang G; Yacaman MJ; Tour JM
    ACS Nano; 2014 Apr; 8(4):3939-46. PubMed ID: 24669862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.
    David L; Bhandavat R; Barrera U; Singh G
    Nat Commun; 2016 Mar; 7():10998. PubMed ID: 27025781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protecting Silicon Film Anodes in Lithium-Ion Batteries Using an Atomically Thin Graphene Drape.
    Suresh S; Wu ZP; Bartolucci SF; Basu S; Mukherjee R; Gupta T; Hundekar P; Shi Y; Lu TM; Koratkar N
    ACS Nano; 2017 May; 11(5):5051-5061. PubMed ID: 28414906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrathick GeP Anode To Balance the Extreme Load and Compliance for High Areal Capacity Flexible Sodium-Ion Batteries.
    Zeng T; Yu H; Luo D; Guan H; He H; Zhang C
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55779-55789. PubMed ID: 37991386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual Vertically Aligned Electrode-Inspired High-Capacity Lithium Batteries.
    Mu Y; Chen Y; Wu B; Zhang Q; Lin M; Zeng L
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203321. PubMed ID: 35999430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Hierarchical Copper Oxide-Germanium Hybrid Film for High Areal Capacity Lithium Ion Batteries.
    Deng L; Li W; Li H; Cai W; Wang J; Zhang H; Jia H; Wang X; Cheng S
    Front Chem; 2019; 7():869. PubMed ID: 31970147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery.
    He H; Luo D; Zeng L; He J; Li X; Yu H; Zhang C
    Sci Bull (Beijing); 2022 Jun; 67(12):1253-1263. PubMed ID: 36546155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries.
    Zhao J; Zhou M; Chen J; Wang L; Zhang Q; Zhong S; Xie H; Li Y
    Small; 2023 Nov; 19(44):e2303353. PubMed ID: 37391276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pie-like electrode design for high-energy density lithium-sulfur batteries.
    Li Z; Zhang JT; Chen YM; Li J; Lou XW
    Nat Commun; 2015 Nov; 6():8850. PubMed ID: 26608228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SnO
    Abnavi A; Sadati Faramarzi M; Abdollahi A; Ramzani R; Ghasemi S; Sanaee Z
    Nanotechnology; 2017 Jun; 28(25):255404. PubMed ID: 28475109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.
    Dörr TS; Fleischmann S; Zeiger M; Grobelsek I; de Oliveira PW; Presser V
    Chemistry; 2018 Apr; 24(24):6358-6363. PubMed ID: 29508934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries.
    Zheng T; Jia Z; Lin N; Langer T; Lux S; Lund I; Gentschev AC; Qiao J; Liu G
    Polymers (Basel); 2017 Nov; 9(12):. PubMed ID: 30965957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of SnO
    Zhu C; Chen Z; Zhu S; Li Y; Pan H; Meng X; Imtiaz M; Zhang D
    Sci Rep; 2017 Jun; 7(1):3276. PubMed ID: 28607348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-Coated Aluminum Thin Film Anodes for Lithium-Ion Batteries.
    Kwon GD; Moyen E; Lee YJ; Joe J; Pribat D
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29486-29495. PubMed ID: 30088912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of Cathode Electrodes in Lithium-Ion Battery: Pitfalls and the Befitting Counter Electrode.
    Han M; Duan J; Wang Z; Wu W; Luo W
    Small; 2023 May; 19(19):e2208018. PubMed ID: 36759956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.