BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 29350526)

  • 41. Practical Approaches to Apply Ultra-Thick Graphite Anode to High-Energy Lithium-Ion Battery: Carbonization and 3-Dimensionalization.
    Park J; Suh S; Tamulevičius S; Kim D; Choi D; Jeong S; Kim HJ
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957056
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spray-Drying-Induced Assembly of Skeleton-Structured SnO
    Liu D; Kong Z; Liu X; Fu A; Wang Y; Guo YG; Guo P; Li H; Zhao XS
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2515-2525. PubMed ID: 29271631
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-Layer-Particle Electrode Design for Practical Fast-Charging Lithium-Ion Batteries.
    Tu S; Lu Z; Zheng M; Chen Z; Wang X; Cai Z; Chen C; Wang L; Li C; Seh ZW; Zhang S; Lu J; Sun Y
    Adv Mater; 2022 Sep; 34(39):e2202892. PubMed ID: 35641316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure.
    Fang R; Zhao S; Pei S; Qian X; Hou PX; Cheng HM; Liu C; Li F
    ACS Nano; 2016 Sep; 10(9):8676-82. PubMed ID: 27537348
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage.
    Jiang Y; Li Y; Zhou P; Yu S; Sun W; Dou S
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26367-73. PubMed ID: 26580088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
    Cao Y; Li X; Aksay IA; Lemmon J; Nie Z; Yang Z; Liu J
    Phys Chem Chem Phys; 2011 May; 13(17):7660-5. PubMed ID: 21448499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Few-Layer Bismuthene with Anisotropic Expansion for High-Areal-Capacity Sodium-Ion Batteries.
    Zhou J; Chen J; Chen M; Wang J; Liu X; Wei B; Wang Z; Li J; Gu L; Zhang Q; Wang H; Guo L
    Adv Mater; 2019 Mar; 31(12):e1807874. PubMed ID: 30714223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency.
    Gao X; Li J; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4154-9. PubMed ID: 24555988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries.
    Xia F; Hu X; Sun Y; Luo W; Huang Y
    Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries.
    Liu Y; He X; Hanlon D; Harvey A; Coleman JN; Li Y
    ACS Nano; 2016 Sep; 10(9):8821-8. PubMed ID: 27541502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries.
    Zhao H; Yuca N; Zheng Z; Fu Y; Battaglia VS; Abdelbast G; Zaghib K; Liu G
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):862-6. PubMed ID: 25496355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stable High-Capacity Elemental Sulfur Cathodes with Simple Process for Lithium Sulfur Batteries.
    Sawada S; Yoshida H; Luski S; Markevich E; Salitra G; Elias Y; Aurbach D
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium-Sulfur Battery Composite Cathodes.
    Li M; Carter R; Douglas A; Oakes L; Pint CL
    ACS Nano; 2017 May; 11(5):4877-4884. PubMed ID: 28452494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monolithic Microparticles Facilitated Flower-Like TiO
    Luo L; Liang K; Khanam Z; Yao X; Mushtaq M; Ouyang T; Balogun MS; Tong Y
    Small; 2024 May; 20(22):e2307103. PubMed ID: 38213015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrafast Carrier Transport through an Advanced Thick Electrode with a High Areal Capacity for Aqueous Lithium-Ion Batteries.
    Chen YC; Hsu YK
    ChemSusChem; 2020 Jul; 13(13):3479-3487. PubMed ID: 32301264
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries.
    Nitze F; Agostini M; Lundin F; Palmqvist AE; Matic A
    Sci Rep; 2016 Dec; 6():39615. PubMed ID: 28008981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-Relaxant Superelastic Matrix Derived from C
    Ardhi REA; Liu G; Tran MX; Hudaya C; Kim JY; Yu H; Lee JK
    ACS Nano; 2018 Jun; 12(6):5588-5604. PubMed ID: 29863848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries.
    Park JS; Jo JH; Yashiro H; Kim SS; Kim SJ; Sun YK; Myung ST
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25941-25951. PubMed ID: 28718628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.