These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29350622)

  • 1. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction.
    Aston PJ; Christie MI; Huang YH; Nandi M
    Physiol Meas; 2018 Mar; 39(2):024001. PubMed ID: 29350622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting new information from old waveforms: Symmetric projection attractor reconstruction: Where maths meets medicine.
    Nandi M; Aston PJ
    Exp Physiol; 2020 Sep; 105(9):1444-1451. PubMed ID: 32347611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attractor Reconstruction for Quantifying the Arterial Pulse Wave Morphology During Device-Guided Slow Breathing.
    Hörandtner C; Bachler M; Sehnert W; Mikisek I; Mengden T; Wassertheurer S; Mayer CC
    Cardiovasc Eng Technol; 2022 Dec; 13(6):939-949. PubMed ID: 35581492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method to quantify arterial pulse waveform morphology: attractor reconstruction for physiologists and clinicians.
    Nandi M; Venton J; Aston PJ
    Physiol Meas; 2018 Oct; 39(10):104008. PubMed ID: 30256216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of blood pressure and inter-beat interval variability in man.
    Jíra M; Závodná E; Nováková Z; Fiser B; Honzíková N
    Physiol Res; 2010; 59 Suppl 1():S113-S121. PubMed ID: 20626215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Imaging Revealing Inner Dynamics for Cardiovascular Waveform Analysis via Unsupervised Manifold Learning.
    Wang SC; Wu HT; Huang PH; Chang CH; Ting CK; Lin YT
    Anesth Analg; 2020 May; 130(5):1244-1254. PubMed ID: 32287131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse Wave Analysis Method of Cardiovascular Parameters Extraction for Health Monitoring.
    Jin J; Geng X; Zhang Y; Zhang H; Ye T
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An open source benchmarked toolbox for cardiovascular waveform and interval analysis.
    Vest AN; Da Poian G; Li Q; Liu C; Nemati S; Shah AJ; Clifford GD
    Physiol Meas; 2018 Oct; 39(10):105004. PubMed ID: 30199376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: frequency domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):387-96. PubMed ID: 22057245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator.
    Li Q; Mark RG; Clifford GD
    Biomed Eng Online; 2009 Jul; 8():13. PubMed ID: 19586547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive transfer function for deriving the aortic pressure waveform from a peripheral artery pressure waveform.
    Swamy G; Xu D; Olivier NB; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1956-63. PubMed ID: 19783780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of three methods for beat-to-beat-interval extraction from continuous blood pressure and electrocardiogram with respect to heart rate variability analysis.
    Suhrbier A; Heringer R; Walther T; Malberg H; Wessel N
    Biomed Tech (Berl); 2006 Jul; 51(2):70-6. PubMed ID: 16915768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetric projection attractor reconstruction: Embedding in higher dimensions.
    Lyle JV; Aston PJ
    Chaos; 2021 Nov; 31(11):113135. PubMed ID: 34881593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fetal Cardiovascular Decompensation During Labor Predicted From the Individual Heart Rate Tracing: A Machine Learning Approach in Near-Term Fetal Sheep Model.
    Gold N; Herry CL; Wang X; Frasch MG
    Front Pediatr; 2021; 9():593889. PubMed ID: 34026680
    [No Abstract]   [Full Text] [Related]  

  • 16. Cuffless Blood Pressure Estimation Using Features Extracted from Carotid Dual-Diameter Waveforms.
    Ramakrishna P; P M N; Kiran V R; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2719-2722. PubMed ID: 33018568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the data sampling rate on accuracy of indices for heart rate and blood pressure variability and baroreflex function in resting rats and mice.
    Bhatia V; Rarick KR; Stauss HM
    Physiol Meas; 2010 Sep; 31(9):1185-201. PubMed ID: 20664161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction.
    Lam F; Lu HW; Wu CC; Aliyazicioglu Z; Kang JS
    Comput Math Methods Med; 2017; 2017():6975085. PubMed ID: 28611850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aortic pressure waveform reconstruction using a multi-channel Newton blind system identification algorithm.
    Liu W; Li Z; Wang Y; Song D; Ji N; Xu L; Mei T; Sun Y; Greenwald SE
    Comput Biol Med; 2021 Aug; 135():104545. PubMed ID: 34144269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.