BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 29350635)

  • 1. Magnetic Resonance Imaging correlates of benign and malignant alterations of the spinal bone marrow.
    Caranci F; Tedeschi E; Ugga L; D'Amico A; Schipani S; Bartollino S; Russo C; Splendiani A; Briganti F; Zappia M; Melone MAB; Masciocchi C; Brunese L
    Acta Biomed; 2018 Jan; 89(1-S):18-33. PubMed ID: 29350635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal Marrow Imaging: Clues to Disease.
    Leake RL; Mills MK; Hanrahan CJ
    Radiol Clin North Am; 2019 Mar; 57(2):359-375. PubMed ID: 30709475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion imaging of the vertebral bone marrow.
    Dietrich O; Geith T; Reiser MF; Baur-Melnyk A
    NMR Biomed; 2017 Mar; 30(3):. PubMed ID: 26114411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematolymphoid neoplasms are common in bone marrow biopsies performed for non-specific, diffuse marrow signal alterations on magnetic resonance imaging.
    Jones TE; Wyse AJ; Gibson SE
    Ann Diagn Pathol; 2019 Jun; 40():7-12. PubMed ID: 30825791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know.
    Chiarilli MG; Delli Pizzi A; Mastrodicasa D; Febo MP; Cardinali B; Consorte B; Cifaratti A; Panara V; Caulo M; Cannataro G
    Radiol Med; 2021 Feb; 126(2):264-276. PubMed ID: 32557107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging findings and clinical features of patients with multiple myeloma with the prognostic effect of bone marrow focal and diffuse infiltration patterns on spine MRI.
    Aribas BK; Arda K; Yologlu Z; Ciledag N; Aktas E; Ozdemir S; Dogan K; Fen T; Dagli M
    Minerva Med; 2011 Apr; 102(2):115-24. PubMed ID: 21483398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions.
    Park S; Kwack KS; Chung NS; Hwang J; Lee HY; Kim JH
    Skeletal Radiol; 2017 May; 46(5):675-683. PubMed ID: 28265697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow investigation with technetium-99m microcolloid and magnetic resonance imaging in patients with malignant myelolympho-proliferative diseases.
    Widding A; Smolorz J; Franke M; Linden A; Diehl V; Schicha H
    Eur J Nucl Med; 1989; 15(5):230-8. PubMed ID: 2503382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow lesions and subchondral bone pathology of the knee.
    Kon E; Ronga M; Filardo G; Farr J; Madry H; Milano G; Andriolo L; Shabshin N
    Knee Surg Sports Traumatol Arthrosc; 2016 Jun; 24(6):1797-814. PubMed ID: 27075892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MR imaging of the spinal bone marrow.
    Tall MA; Thompson AK; Vertinsky T; Palka PS
    Magn Reson Imaging Clin N Am; 2007 May; 15(2):175-98, vi. PubMed ID: 17599639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal variants and frequent marrow alterations that simulate bone marrow lesions at MR imaging.
    Vande Berg BC; Lecouvet FE; Galant C; Maldague BE; Malghem J
    Radiol Clin North Am; 2005 Jul; 43(4):761-70, ix. PubMed ID: 15893536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI of spinal bone marrow: part I, techniques and normal age-related appearances.
    Shah LM; Hanrahan CJ
    AJR Am J Roentgenol; 2011 Dec; 197(6):1298-308. PubMed ID: 22109283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis.
    Hanrahan CJ; Shah LM
    AJR Am J Roentgenol; 2011 Dec; 197(6):1309-21. PubMed ID: 22109284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR Imaging of Pediatric Bone Marrow.
    Chan BY; Gill KG; Rebsamen SL; Nguyen JC
    Radiographics; 2016 Oct; 36(6):1911-1930. PubMed ID: 27726743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for the detection of spinal bone marrow infiltration in untreated patients with multiple myeloma.
    Hur J; Yoon CS; Ryu YH; Yun MJ; Suh JS
    Acta Radiol; 2008 May; 49(4):427-35. PubMed ID: 18415787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serous degeneration of bone marrow mimics spinal tumor.
    Sung CW; Hsieh KL; Lin YH; Lin CY; Lee CH; Tsuang YH; Kuo YJ
    Eur Spine J; 2017 May; 26(Suppl 1):80-84. PubMed ID: 27652677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of fat content in vertebral marrow using a modified dixon sequence to differentiate benign from malignant processes.
    Yoo HJ; Hong SH; Kim DH; Choi JY; Chae HD; Jeong BM; Ahn JM; Kang HS
    J Magn Reson Imaging; 2017 May; 45(5):1534-1544. PubMed ID: 27690264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conventional and Advanced Imaging of Spine Oncologic Disease, Nonoperative Post-treatment Effects, and Unique Spinal Conditions.
    Chokshi FH; Law M; Gibbs WN
    Neurosurgery; 2018 Jan; 82(1):1-23. PubMed ID: 29029304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of primary bone tumors of the spine.
    Drevelegas A; Chourmouzi D; Boulogianni G; Sofroniadis I
    Eur Radiol; 2003 Aug; 13(8):1859-71. PubMed ID: 12942286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow magnetic resonance studies in childhood leukemia. Evaluation of osteonecrosis.
    Pieters R; van Brenk AI; Veerman AJ; van Amerongen AH; van Zanten TE; Golding RP
    Cancer; 1987 Dec; 60(12):2994-3000. PubMed ID: 3479230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.