These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29350935)

  • 1. Reconfigurable Skyrmion Logic Gates.
    Luo S; Song M; Li X; Zhang Y; Hong J; Yang X; Zou X; Xu N; You L
    Nano Lett; 2018 Feb; 18(2):1180-1184. PubMed ID: 29350935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable Skyrmion-Based Logic Gates: Versatile Design and Full-Scale Implementation.
    Belrhazi H; Fattouhi M; El Hafidi MY; El Hafidi M
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3703-3718. PubMed ID: 38214036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skyrmion based majority logic gate by voltage controlled magnetic anisotropy in a nanomagnetic device.
    Paikaray B; Kuchibhotla M; Haldar A; Murapaka C
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36827697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier.
    Yu D; Yang H; Chshiev M; Fert A
    Natl Sci Rev; 2022 Dec; 9(12):nwac021. PubMed ID: 36713589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skyrmion motion under temperature gradient and application in logic devices.
    Raj RK; Bindal N; Kaushik BK
    Nanotechnology; 2023 Nov; 35(7):. PubMed ID: 38014695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-controlled magnetic anisotropy gradient-driven skyrmion-based half-adder and full-adder.
    Sara S; Murapaka C; Haldar A
    Nanoscale; 2024 Jan; 16(4):1843-1852. PubMed ID: 38168698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skyrmion based 3D low complex runtime reconfigurable architecture design methodology of universal logic gate.
    Sivasubramani S; Paikaray B; Kuchibhotla M; Haldar A; Murapaka C; Acharyya A
    Nanotechnology; 2023 Jan; 34(13):. PubMed ID: 36584387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spin wave driven skyrmion-based diode on a T-shaped nanotrack.
    Saini S; Bindal N; Raj RK; Kaushik BK
    Nanoscale; 2024 May; 16(18):9004-9010. PubMed ID: 38623868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-volatile reconfigurable spin logic functions in a two-channel Hall bar by spin-orbit torque-based magnetic domains and directional read current.
    Shin J; Seo J; Song S; Kim W; Hyeon DS; Hong J
    Sci Rep; 2023 Jul; 13(1):11600. PubMed ID: 37463993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiferromagnetic skyrmion-based high speed diode.
    Bindal N; Raj RK; Kaushik BK
    Nanoscale Adv; 2023 Jan; 5(2):450-458. PubMed ID: 36756271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ferromagnetic skyrmion-based diode with a voltage-controlled potential barrier.
    Zhao L; Liang X; Xia J; Zhao G; Zhou Y
    Nanoscale; 2020 May; 12(17):9507-9516. PubMed ID: 32314775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions.
    Zhang X; Ezawa M; Zhou Y
    Sci Rep; 2015 Mar; 5():9400. PubMed ID: 25802991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skyrmionium - high velocity without the skyrmion Hall effect.
    Kolesnikov AG; Stebliy ME; Samardak AS; Ognev AV
    Sci Rep; 2018 Nov; 8(1):16966. PubMed ID: 30446670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dramatic pressure-driven enhancement of bulk skyrmion stability.
    Levatić I; Popčević P; Šurija V; Kruchkov A; Berger H; Magrez A; White JS; Rønnow HM; Živković I
    Sci Rep; 2016 Feb; 6():21347. PubMed ID: 26892190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated skyrmion, skyrmion lattice and antiskyrmion lattice creation through magnetization reversal in Co/Pd nanostructure.
    Kandukuri S; Murthy VSN; Thiruvikraman PK
    Sci Rep; 2021 Sep; 11(1):18945. PubMed ID: 34556719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiferromagnetic skyrmion repulsion based artificial neuron device.
    Bindal N; Ian CAC; Lew WS; Kaushik BK
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33530074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy.
    Lin JQ; Chen JP; Tan ZY; Chen Y; Chen ZF; Li WA; Gao XS; Liu JM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Content-Addressable Memories and Transformable Logic Circuits Based on Ferroelectric Reconfigurable Transistors for In-Memory Computing.
    Zhao Z; Kang J; Tunga A; Ryu H; Shukla A; Rakheja S; Zhu W
    ACS Nano; 2024 Jan; 18(4):2763-2771. PubMed ID: 38232763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy.
    Bhattacharya D; Al-Rashid MM; Atulasimha J
    Nanotechnology; 2017 Oct; 28(42):425201. PubMed ID: 28726688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-Free Programmable Spin Logics via Chirality-Reversible Spin-Orbit Torque Switching.
    Wang X; Wan C; Kong W; Zhang X; Xing Y; Fang C; Tao B; Yang W; Huang L; Wu H; Irfan M; Han X
    Adv Mater; 2018 Aug; 30(31):e1801318. PubMed ID: 29931713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.