These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29351223)

  • 1. A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones.
    Kang X; Huang B; Qi G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at Various Walking Speeds Using a Smartphone.
    Ho NH; Truong PH; Jeong GM
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones.
    Song Z; Park HJ; Thapa N; Yang JG; Harada K; Lee S; Shimada H; Park H; Park BK
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Accurate Step Counting at Various Walking States Using Low-Cost Inertial Measurement Unit Support Indoor Positioning System.
    Pham VT; Nguyen DA; Dang ND; Pham HH; Tran VA; Sandrasegaran K; Tran DT
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30241393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones.
    Kuang J; Niu X; Chen X
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29724003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Smartphone Step Counter Using IMU and Magnetometer for Navigation and Health Monitoring Applications.
    Khedr M; El-Sheimy N
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29117143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vector graph assisted pedestrian dead reckoning using an unconstrained smartphone.
    Qian J; Pei L; Ma J; Ying R; Liu P
    Sensors (Basel); 2015 Mar; 15(3):5032-57. PubMed ID: 25738763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Lower Limb Motion Capture and Recognition Based on Smartphones.
    Duan LT; Lawo M; Wang ZG; Wang HY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of smartphone-based gait measurements for quantification of physical activity/inactivity levels.
    Ebara T; Azuma R; Shoji N; Matsukawa T; Yamada Y; Akiyama T; Kurihara T; Yamada S
    J Occup Health; 2017 Nov; 59(6):506-512. PubMed ID: 28835575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of smartphone step count algorithm used in STARFISH smartphone application.
    Dybus A; Paul L; Wyke S; Brewster S; Gill JMR; Ramsay A; Campbell E
    Technol Health Care; 2017 Dec; 25(6):1157-1162. PubMed ID: 28946599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study.
    Straczkiewicz M; Keating NL; Thompson E; Matulonis UA; Campos SM; Wright AA; Onnela JP
    JMIR Cancer; 2023 Nov; 9():e47646. PubMed ID: 37966891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions.
    Höchsmann C; Knaier R; Eymann J; Hintermann J; Infanger D; Schmidt-Trucksäss A
    Scand J Med Sci Sports; 2018 Jul; 28(7):1818-1827. PubMed ID: 29460319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smartphone Location Recognition: A Deep Learning-Based Approach.
    Klein I
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings.
    Straczkiewicz M; Keating NL; Thompson E; Matulonis UA; Campos SM; Wright AA; Onnela JP
    medRxiv; 2023 Mar; ():. PubMed ID: 37034681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of the iPhone M7 motion co-processor as a pedometer for able-bodied ambulation.
    Major MJ; Alford M
    J Sports Sci; 2016 Dec; 34(23):2160-2164. PubMed ID: 27240005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone application for emergency signal detection.
    Figueiredo IN; Leal C; Pinto L; Bolito J; Lemos A
    Med Eng Phys; 2016 Sep; 38(9):1021-7. PubMed ID: 27264240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait parameter and event estimation using smartphones.
    Pepa L; Verdini F; Spalazzi L
    Gait Posture; 2017 Sep; 57():217-223. PubMed ID: 28667903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel algorithm for a smartphone-based 6-minute walk test application: algorithm, application development, and evaluation.
    Capela NA; Lemaire ED; Baddour N
    J Neuroeng Rehabil; 2015 Feb; 12():19. PubMed ID: 25889112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking.
    Zhuo S; Sherlock L; Dobbie G; Koh YS; Russello G; Lottridge D
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive, real-time cadence algorithm for unconstrained sensor placement.
    van Oeveren BT; de Ruiter CJ; Beek PJ; Rispens SM; van Dieën JH
    Med Eng Phys; 2018 Feb; 52():49-58. PubMed ID: 29373232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.